\qquad
\qquad

Writing Rational Numbers as Decimals

You can use long division to write any rational number as a decimal. When you write a rational number as a decimal, it will either terminate or repeat. Let's look at an example of each.

Example 1: Write $2 \frac{5}{8}$ as a decimal.
You can write $2 \frac{5}{8}$ as $2+\frac{5}{8}$. Start by writing $\frac{5}{8}$ as a decimal. Divide 5 by 8 using long division.
$8 \longdiv { 5 . 6 0 5 }$ -48 $\begin{array}{r}20 \\ -16 \\ \hline 40\end{array}$ -40 Terminating decimals

So, you can write $\frac{5}{8}$ as 0.625 . Since you want to write $2 \frac{5}{8}$ as a decimal, add 2 to 0.625 .

$$
2+0.625=2.625
$$

So, $2 \frac{5}{8}$ written as a decimal is 2.625 .

Example 2: Write $\frac{4}{11}$ as a decimal.
Divide 4 by 11 using long division.

If any digits in a decimal repeat, you can use a bar over those digits to show that they repeat. Since the digits 3 and 6 repeat in the quotient above, you can write it as $0 . \overline{36}$.

So, $\frac{4}{11}$ written as a decimal is $0 . \overline{36}$.

Try it yourself! Use long division to write each rational number as a decimal. Remember to write repeating decimals with a bar over any digits that repeat.

1. $\frac{9}{12}=$ \qquad
2. $\frac{8}{9}=$ \qquad
3. $-\frac{3}{5}=$ \qquad

Writing Rational Numbers as Decimals

Keep going! Use long division to write each rational number as a decimal. Remember to write repeating decimals with a bar over any digits that repeat.

4. $-\frac{6}{11}=$	5. $\frac{23}{30}=$	6. $-3 \frac{9}{40}=$
7. $\frac{7}{15}=$	8. $6 \frac{7}{8}=$	9. $-\frac{5}{33}=$
10. $-1 \frac{29}{60}=$	11. $-\frac{261}{40}=$	12. $-\frac{123}{50}=$
$\text { 13. } \frac{47}{90}=$	14. $4 \frac{19}{80}=$	15. $-8 \frac{27}{55}=$

