## Writing Rational Numbers as Decimals

You can use long division to write any rational number as a decimal. When you write a rational number as a decimal, it will either terminate or repeat. Let's look at an example of each.



Example 1: Write  $2\frac{5}{8}$  as a decimal.

You can write  $2\frac{5}{8}$  as  $2 + \frac{5}{8}$ . Start by writing  $\frac{5}{8}$  as a decimal. Divide 5 by 8 using long division.

$$\begin{array}{c}
0.625 \\
\hline
8)5.000 \\
\underline{-48} \\
20 \\
\underline{-16} \\
40 \\
\underline{-40} \\
0
\end{array}$$
Terminating decimals have remainders of 0.

So, you can write  $\frac{5}{8}$  as 0.625. Since you want to write  $2\frac{5}{8}$  as a decimal, add 2 to 0.625.

So,  $2\frac{5}{8}$  written as a decimal is 2.625.

**Example 2:** Write  $\frac{4}{11}$  as a decimal.

Divide 4 by 11 using long division.

If any digits in a decimal repeat, you can use a bar over those digits to show that they repeat. Since the digits 3 and 6 repeat in the quotient above, you can write it as  $0.\overline{36}$ .

So,  $\frac{4}{11}$  written as a decimal is  $0.\overline{36}$ .

Try it yourself! Use long division to write each rational number as a decimal. Remember to write repeating decimals with a bar over any digits that repeat.

**1.** 
$$\frac{9}{12} =$$
 \_\_\_\_\_

**2.** 
$$\frac{8}{9}$$
 = \_\_\_\_\_

3. 
$$-\frac{3}{5} =$$

## Writing Rational Numbers as Decimals

Keep going! Use long division to write each rational number as a decimal. Remember to write repeating decimals with a bar over any digits that repeat.

4. 
$$-\frac{6}{11} =$$
\_\_\_\_\_

**5.** 
$$\frac{23}{30} =$$

6. 
$$-3\frac{9}{40} =$$
\_\_\_\_\_

**7.** 
$$\frac{7}{15} =$$
\_\_\_\_\_

9. 
$$-\frac{5}{33}$$
 =

**10.** 
$$-1\frac{29}{60}$$
 =

**11.** 
$$-\frac{261}{40}$$
 =

**12.** 
$$-\frac{123}{50}$$
 =

**13.** 
$$\frac{47}{90}$$
 = \_\_\_\_\_

**14.** 
$$4\frac{19}{80} =$$

**15.** 
$$-8\frac{27}{55} =$$