Transformations on the Coordinate Plane: Translations

A translation is a type of transformation that slides every point in a figure the same distance and direction without rotating or resizing. Here is a rule to find the points of a translated figure:

Rule:	Preimage (x, y)	\rightarrow	Image
	\mapsto	$(x+\boldsymbol{h}, y+k)$	

- When translating to the right, \boldsymbol{h} is positive.
- When translating to the left, \boldsymbol{h} is negative.
- When translating up, k is positive.
- When translating down, k is negative.

Note: For translations, the preimage and its image are congruent!

Translating a Figure: Translate $\triangle A B C 4$ units to the right and 2 units down. Find the coordinates of the image.

$$
\begin{array}{ll}
\boldsymbol{A}(-4,2) & \mapsto A^{\prime}(-4+4,2-2)=A^{\prime}(0,0) \\
\boldsymbol{B}(0,3) & \mapsto B^{\prime}(0+4,3-2)=B^{\prime}(4,1) \\
\boldsymbol{C}(-3,-2) & \mapsto C^{\prime}(-3+4,-2-2)=C^{\prime}(1,-4)
\end{array}
$$

The coordinates of the image are $A^{\prime}(0,0), B^{\prime}(4,1)$, and $C^{\prime}(1,-4)$.

Describing a Translation: Describe the translation of $\triangle D E F$ to $\triangle D^{\prime} E^{\prime} F^{\prime}$.

$\triangle D E F$ was translated

 5 units to the left and 3 units up.You can also describe this with a rule:

$$
(x, y) \mapsto(x-5, y+3)
$$

