Transformations on the Coordinate Plane: Rotations

A rotation is a type of transformation that turns a figure around a fixed point, called the center of rotation. It creates an image that is congruent to the preimage. The number of degrees a figure rotates is called the angle of rotation, and a positive angle of rotation turns a figure counterclockwise. Here are some rules to help you find the coordinates of a rotated image:

Counterclockwise Rotations Around the Origin	
Angle of Rotation	Rule
90°	$(x, y) \mapsto(-y, x)$
180°	$(x, y) \mapsto(-x,-y)$
270°	$(x, y) \mapsto(y,-x)$

Note: Rotating n° clockwise is the same as rotating (360-n) ${ }^{\circ}$ counterclockwise.

For example, rotating 270° clockwise is the same as rotating 90° counterclockwise.

Rotating a Figure: Rotate $\triangle C D E 90^{\circ}$ around the origin. What are the coordinates of the image?

The rule for a 90° rotation is $(x, y) \mapsto(-y, x)$.

$$
\begin{array}{lll}
\boldsymbol{C}(-4,3) & \mapsto & \boldsymbol{C}^{\prime}(-3,-4) \\
\boldsymbol{D}(1,4) & \mapsto & D^{\prime}(-4,1) \\
\boldsymbol{E}(-1,1) & \mapsto & E^{\prime}(-1,-1)
\end{array}
$$

The coordinates of the image are $C^{\prime}(-3,-4), D^{\prime}(-4,1)$, and $E^{\prime}(-1,-1)$.

Describing a Rotation: Describe the rotation that maps $\triangle S T U$ to $\triangle S^{\prime} T^{\prime} U^{\prime}$.

$$
\begin{array}{lll}
\boldsymbol{S}(-3,-3) & \mapsto & \boldsymbol{S}^{\prime}(3,3) \\
\boldsymbol{T}(3,-1) & \mapsto & T^{\prime}(-3,1) \\
\boldsymbol{U}(1,-5) & \mapsto & \boldsymbol{U}^{\prime}(-1,5)
\end{array}
$$

The signs of both the x -coordinates and y-coordinates changed, which corresponds to the rule for a 180° rotation: $(x, y) \mapsto(-x,-y)$.
$\triangle S T U$ was rotated 180° around the origin.

