Transformations on the Coordinate Plane: Rotations

A **rotation** is a type of transformation that turns a figure around a fixed point, called the *center of rotation*. It creates an image that is congruent to the preimage. The number of degrees a figure rotates is called the *angle of rotation*, and a positive angle of rotation turns a figure counterclockwise. Here are some rules to help you find the coordinates of a rotated image:

Counterclockwise Rotations Around the Origin		
Angle of Rotation	Rule	
90°	$(x, y) \mapsto (-y, x)$	
180°	$(x, y) \mapsto (-x, -y)$	
270°	$(x, y) \mapsto (y, -x)$	

<u>Note</u>: Rotating n° clockwise is the same as rotating (360 – n)° counterclockwise.

For example, rotating 270° clockwise is the same as rotating 90° counterclockwise.

Rotating a Figure: Rotate $\triangle CDE$ 90° around the origin. What are the coordinates of the image?

The rule for a 90° rotation is $(x, y) \mapsto (-y, x)$.

C (-4, 3)	\mapsto	C' (-3, -4)
D (1, 4)	\mapsto	D' (-4, 1)
E (-1, 1)	\mapsto	E' (-1, -1)

The coordinates of the image are *C*'(-3, -4), *D*'(-4, 1), and *E*'(-1, -1).

Describing a Rotation: Describe the rotation that maps $\triangle STU$ to $\triangle S'T'U'$.

S (-3, -3)	\mapsto	S' (3, 3)
T (3, -1)	\mapsto	T' (-3, 1)
U (1, -5)	\mapsto	U' (–1, 5)

The signs of both the x-coordinates and y-coordinates changed, which corresponds to the rule for a 180° rotation: $(x, y) \mapsto (-x, -y)$. $\triangle STU$ was rotated 180° around the origin.