Transformations on the Coordinate Plane: Reflections

A reflection is a type of transformation that flips a figure over a line, called the line of reflection. A reflection creates a mirror image that is congruent to the original figure. Here are some rules to help you find the points of a reflected figure:

| Reflection across the x-axis | - x-coordinate stays the same
 - y-coordinate is the opposite | $(x, y) \mapsto(x,-y)$ |
| :--- | :--- | :--- | :--- |
| Reflection across the y-axis | - x-coordinate is the opposite
 - y-coordinate stays the same | $(x, y) \mapsto(-x, y)$ |
| Reflection across any line | Each point in the image is the same distance from the line
 of reflection as its corresponding point in the preimage. | |

Reflecting a Figure: Reflect $\triangle J K L$ across the x-axis. What are the coordinates of the image?

$$
\begin{array}{lll}
J(-2,3) & \mapsto & J^{\prime}(-2,-3) \\
\boldsymbol{K}(3,4) & \mapsto & K^{\prime}(3,-4) \\
\boldsymbol{L}(1,1) & \mapsto & L^{\prime}(1,-1)
\end{array}
$$

The coordinates of the image are $J^{\prime}(-2,-3), K^{\prime}(3,-4)$, and $L^{\prime}(1,-1)$.

Describing a Reflection: Parallelogram QRST and its image after a reflection are given. Identify the line of reflection.

$$
\begin{array}{lll}
\boldsymbol{Q}(-4,5) & \mapsto & Q^{\prime}(4,5) \\
\boldsymbol{R}(-2,5) & \mapsto & \boldsymbol{R}^{\prime}(2,5) \\
\boldsymbol{S}(-3,1) & \mapsto & \boldsymbol{S}^{\prime}(3,1) \\
\boldsymbol{T}(-5,1) & \mapsto & \boldsymbol{T}^{\prime}(5,1)
\end{array}
$$

For each vertex, the x-coordinate is the opposite and the y-coordinate is the same.
The line of reflection is the y-axis.

