Transformations on the Coordinate Plane: Reflections

A **reflection** is a type of transformation that flips a figure over a line, called the *line of reflection*. A reflection creates a mirror image that is congruent to the original figure. Here are some rules to help you find the points of a reflected figure:

Reflection across the <i>x</i> -axis	 <i>x</i>-coordinate stays the same <i>y</i>-coordinate is the opposite 	$(x, y) \mapsto (x, -y)$
Reflection across the y-axis	 <i>x</i>-coordinate is the opposite <i>y</i>-coordinate stays the same 	$(x, y) \mapsto (-x, y)$
Reflection across any line	Each point in the image is the same distance from the line of reflection as its corresponding point in the preimage.	

Reflecting a Figure: Reflect $\triangle JKL$ across the *x*-axis. What are the coordinates of the image?

 $J(-2, 3) \mapsto J'(-2, -3)$

K(3, 4) → **K**'(3, -4) **L**(1, 1) → **L**'(1, -1)

The coordinates of the image are J'(-2, -3), K'(3, -4), and L'(1, -1).

Describing a Reflection: Parallelogram *QRST* and its image after a reflection are given. Identify the line of reflection.

Q (-4, 5)	\mapsto	Q'(4 , 5)
R (-2, 5)	\mapsto	R'(2 , 5)
S (-3, 1)	\mapsto	S'(3 , 1)
T (-5, 1)	\mapsto	T' (5, 1)

For each vertex, the *x*-coordinate is the **opposite** and the *y*-coordinate is the same.

The line of reflection is the y-axis.

