Transformations on the Coordinate Plane: Dilations

A dilation is a type of transformation that changes the size of a figure without changing its shape. This results in an image that is similar to the preimage. Figures are dilated from a fixed point, called the center of dilation. When dilating a figure centered at the origin, here is a rule to help you find the coordinates of the image:

Rule: $(x, y) \mapsto(k x, k y)$

- When $\boldsymbol{k}>1$, the dilation is an enlargement, and the image is larger than the preimage.
- When $0<\boldsymbol{k}<1$, the dilation is a reduction, and the image is smaller than the preimage.

Note: \boldsymbol{k} is the scale factor, which is the ratio of a side length in the image to the corresponding side length in the preimage.

Dilating a Figure: Dilate $\triangle R S T$ with a scale factor of 3, centered at the origin. What are the coordinates of the image?

$\boldsymbol{R}(1,1)$	$\mapsto R^{\prime}(3 \cdot 1,3 \cdot 1)$	$=R^{\prime}(3,3)$
$\boldsymbol{S}(2,-2)$	$\mapsto \boldsymbol{S}^{\prime}(\mathbf{3} \cdot 2, \mathbf{3} \cdot(-2))=$	$=\mathbf{S}^{\prime}(6,-6)$
$\boldsymbol{T}(-2,-1)$	$\mapsto T^{\prime}(\mathbf{3} \cdot(-2), \mathbf{3} \cdot(-1))=$	$=T^{\prime}(-6,-3)$

The coordinates of the image are $R^{\prime}(3,3), S^{\prime}(6,-6)$, and $T^{\prime}(-6,-3)$.

Describing a Dilation: The rectangle $E^{\prime} F^{\prime} G^{\prime} H^{\prime}$ is a dilation of the rectangle $E F G H$, centered at the origin. Identify the type of dilation and the scale factor.

The image is smaller than the preimage, so the dilaton is a reduction.
$\bar{E}^{\prime} H^{\prime}$ is 3 units long, and $\overline{\boldsymbol{E H}}$ is 6 units long.
The ratio of $\overline{E^{\prime} H^{\prime}}$ to the corresponding side length, $\overline{\boldsymbol{E H}}$, is $\frac{3}{6}$ or $\frac{1}{2}$.

The scale factor is $\frac{1}{2}$ or 0.5 .

