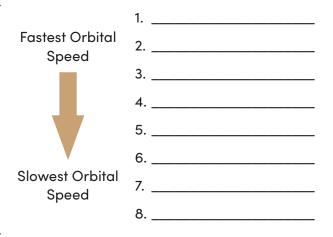
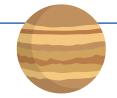

The Solar System to Scale


- Compare and contrast properties of the planets by analyzing the data below. \vdash

1. This table shows the average distance from the sun and the average orbital speed of all the planets in our solar system.

Planet	Average Distance From the Sun (millions of km)	Average Orbital Speed (km/s)			
Neptune	4,500	5			
Saturn	1,430	10			
Uranus	2,870	7			
Mercury	58	47			
Venus	108	35			
Earth	150	30			
Jupiter	778	13			
Mars	228	24			

a. Rank the planets in order from closest to the sun to farthest from the sun and from fastest orbital speed to slowest orbital speed.


b. What relationship do you notice between the average distance from the sun and the average orbital speed of the planets?

The Solar System to Scale

Keep going! Answer the questions below. +

2. The table below shows the average volume and the primary composition of all the planets in our solar system.

(a.) Rank the planets in order from smallest volume to largest volume.

Planet	Volume (billions of km³)	Primary Composition				
Mars	160	rock				
Jupiter	1,431,280	gas				
Neptune	62,530	ice				
Earth	1,090	rock				
Uranus	68,330	ice				
Venus	930	rock				
Mercury	60	rock				
Saturn	827,130	gas				

- b. What relationship do you notice between the volume and the primary composition of the planets?
- 3. The diameter of Mercury is roughly 5,000 kilometers, and the diameter of Neptune is roughly 50,000 kilometers. It's clear that Neptune is bigger than Mercury, but how much bigger? A **scale model** can help us visualize this difference in size.
 - a. Using the grid below, draw a scale model to compare the size of Mercury and Neptune. Every square of the grid represents 5,000 km.

b. Using the information from this question and the table from question 2, fill in the blanks and answer the question below.

Neptune's di	ameter is about	times as
big as Mercu	ury's. But Neptune's	s volume is about
	times as big as M	lercury's. Why do
you think the	nt is?	