\qquad
\qquad

Solving Systems of Linear Equations: Graphing

A system of linear equations contains two or more linear equations that use the same variables. The solution is the ordered pair that makes each equation in the system true. So, you can solve a system of linear equations by graphing the lines and finding the point where they intersect.

Let's try an example! Solve this system of equations by graphing. \rightarrow

1. To help you graph the equations, make sure each equation is in slope-intercept form.

$$
\begin{aligned}
& y=x-1 \\
& x+2 y=4
\end{aligned}
$$ The first equation is already written in slope-intercept form, but the second equation is not. Rewrite the second equation:

$$
\begin{aligned}
x+2 y & =4 & & \text { Subtract } x \text { from both sides. } \\
2 y & =-x+4 & & \text { Divide everything on each side of the equation by } 2 . \\
y & =-\frac{1}{2} x+2 & & \text { Now the second equation is in slope-intercept form. }
\end{aligned}
$$

2. Next, use the y-intercept and the slope to graph the first equation, $y=x-1$.

3. Then, graph the second equation, $y=-\frac{1}{2} x+2$, on the same coordinate plane.

Try it yourself! Graph each system of equations. Then, write the solution.

Solution:
$(-\quad, \quad)$

Solution:

$(-\quad, \quad)$

Solving Systems of Linear Equations: Graphing

Keep going! Graph each system of equations. Then, write the solution.

