\qquad

SOLVING EQUATIONS WITH SQUARE ROOTS

Taking the square root of a number is the opposite, or inverse, of squaring it. So, you can solve some equations using square roots.

Let's try it! Solve $x^{2}=9$.

$$
x^{2}=9
$$

$$
\sqrt{x^{2}}=\sqrt{9} \quad \text { Take the square root of both sides of the equation. }
$$

$$
x= \pm 3 \quad \text { Since } 3^{2}=3 \cdot 3=9 \text { and }(-3)^{2}=(-3) \cdot(-3)=9 \text {, both } 3 \text { and }-3 \text { are square }
$$ roots of 9 . You can write this as ± 3.

In the example above, you can simplify the square root of 9 to get ± 3 since 9 is a perfect square.
Consider solving an equation like $x^{2}=11$. Because 11 is not a perfect square, you would need to write your answer using the square root symbol. So, the exact solution of $x^{2}=11$ is $x= \pm \sqrt{11}$.

Try it yourself! Solve each equation for the variable. Don't forget to check if you're taking the square root of a perfect square or not!

$a^{2}=36$	$m^{2}=4$	$g^{2}=68$
$j^{2}=16$	$q^{2}=20$	$b^{2}=144$
$r^{2}=55$	$d^{2}=81$	$s^{2}=225$
$f^{2}=141$	$w^{2}=100$	$h^{2}=200$
$c^{2}=289$	$y^{2}=400$	$z^{2}=180$
$v^{2}=900$	$k^{2}=625$	$p^{2}=250$

