Name _

SOLVING EQUATIONS WITH SQUARE ROOTS

Taking the square root of a number is the opposite, or inverse, of squaring it. So, you can solve some equations using square roots.

Let's try it! Solve $x^2 = 9$.

$$x^2 = 9$$
 $\sqrt{x^2} = \sqrt{9}$ Take the square root of both sides of the equation. $x = \pm 3$ Since $3^2 = 3 \cdot 3 = 9$ and $(-3)^2 = (-3) \cdot (-3) = 9$, both 3 and -3 are square roots of 9. You can write this as ± 3 .

In the example above, you can simplify the square root of 9 to get ±3 since 9 is a perfect square.

Consider solving an equation like $x^2 = 11$. Because 11 is not a perfect square, you would need to write your answer using the square root symbol. So, the exact solution of $x^2 = 11$ is $x = \pm \sqrt{11}$.

Try it yourself! Solve each equation for the variable. Don't forget to check if you're taking the square root of a perfect square or not!

$a^2 = 36$	$m^2 = 4$	g ² = 68
j ² = 16	q ² = 20	b ² = 144
$r^{2} = 55$	d ² = 81	<i>s</i> ² = 225
$f^{2} = 141$	w ² = 100	h ² = 200
c ² = 289	$y^{2} = 400$	<i>z</i> ² = 180
v ² = 900	k ² = 625	p ² = 250

