Name

SOLVING EQUATIONS WITH CUBE ROOTS

Taking the cube root of a number is the opposite, or inverse, of cubing it. So, you can solve some equations using cube roots.

Let's try it! Solve $x^3 = -8$ for x.

$$x^{3} = -8$$

 $\sqrt[3]{x^3} = \sqrt[3]{-8}$ Take the cube root of both sides of the equation.

x = -2 Since $(-2)^3 = (-2) \cdot (-2) \cdot (-2) = -8$, the cube root of -8 is -2.

In the example above, you can simplify the cube root of -8 to get -2 since -8 is a perfect cube.

Consider solving an equation like $x^3 = 15$. Because 15 is not a perfect cube, you would need to write your answer using the cube root symbol. So, the exact solution of $x^3 = 15$ is $x = \sqrt[3]{15}$.

Try it yourself! Solve each equation for the variable. Don't forget to check if you're taking the cube root of a perfect cube or not!

b ³ = 64	f ³ = 2	$z^{3} = -27$
h ³ = 216	$p^{3} = -9$	m ³ = 512
$c^{3} = -300$	r ³ = 125	b ³ = -729
t ³ = 1,500	n ³ = 1,000	a ³ = -1,331
<i>g</i> ³ = 3,375	γ ³ = -27,000	d ³ = 6,400