\qquad

SOLVING EQUATIONS WITH CUBE ROOTS

Taking the cube root of a number is the opposite, or inverse, of cubing it. So, you can solve some equations using cube roots.

Let's try it! Solve $x^{3}=-8$ for x.

$$
\begin{aligned}
x^{3} & =-8 \\
\sqrt[3]{x^{3}} & =\sqrt[3]{-8} \\
x & \text { Take the cube root of both sides of the equation. } \\
x & \text { Since }(-2)^{3}=(-2) \cdot(-2) \cdot(-2)=-8, \text { the cube root of }-8 \text { is }-2 .
\end{aligned}
$$

In the example above, you can simplify the cube root of -8 to get -2 since -8 is a perfect cube.
Consider solving an equation like $x^{3}=15$. Because 15 is not a perfect cube, you would need to write your answer using the cube root symbol. So, the exact solution of $x^{3}=15$ is $x=\sqrt[3]{15}$.

Try it yourself! Solve each equation for the variable. Don't forget to check if you're taking the cube root of a perfect cube or not!

$b^{3}=64$	$f^{3}=2$	$z^{3}=-27$
$h^{3}=216$	$p^{3}=-9$	$m^{3}=512$
$c^{3}=-300$	$r^{3}=125$	$b^{3}=-729$
$t^{3}=1,500$	$n^{3}=1,000$	$a^{3}=-1,331$
$g^{3}=3,375$	$y^{3}=-27,000$	$d^{3}=6,400$

