Properties of Exponents

NAME
SUMMARY
PROPERTY
EXAMPLE

Product of Powers	When multiplying powers with the same base, add the exponents.	$x^{n} \cdot x^{m}=x^{n+m}$	$5^{3} \cdot 5^{4}=5^{7}$
Quotient of Powers	When dividing powers with the same base, subtract the exponents.	$\frac{x^{n}}{x^{m}}=x^{n-m}$	$\frac{2^{8}}{2^{2}}=2^{6}$
Power of a Power	To find a power of a power, multiply the exponents.	$\left(x^{n}\right)^{m}=x^{n \cdot m}$	$\left(3^{5}\right)^{2}=3^{10}$
Power of a Product	To find the power of a product, multiply the powers of the individual factors.	$(x \cdot y)^{n}=x^{n} \cdot y^{n}$	$(6 \cdot 2)^{4}=6^{4} \cdot 2^{4}$
Power of a Quotient	To find the power of a quotient, divide the powers of the numerator and denominator.	$\left(\frac{x}{y}\right)^{n}=\frac{x^{n}}{y^{n}}$	$\left(\frac{5}{9}\right)^{3}=\frac{5^{3}}{9^{3}}$
Zero Exponent	Any nonzero base raised to the zero power equals 1.	$x^{0}=1$	$\mathbf{x}^{-n}=\frac{1}{x^{n}}$

