Name:

\qquad

Parallel and Perpendicular Lines

Parallel lines are distinct lines lying in the same plane that never intersect each other. Perpendicular lines are lines that intersect each other at right angles.

Parallel lines

Perpendicular lines

Mikey draws a line segment from $(-3,-3)$ to $(2,6)$. He then draws a line segment from $(-2,-5)$ to $(3,4)$. If he wants to draw another line segment that is parallel to those two segments, what points will he use? What about a line that is perpendicular?

									8								
									7								
									6								
								5									
									4								
									3								
									2								
									1								
-8	-7	-6	-5	-4	-3	-2	-1		0	1	2	3	4	5	6	7	8
								-1									
								-2									
								-3									
								-4									
								-5									
								-6									
								-7									
								-8									

\qquad
\qquad

Parallel and Perpendicular Lines

Parallel lines are distinct lines lying in the same plane that never intersect each other. Perpendicular lines are lines that intersect each other at right angles.

Parallel lines

Perpendicular lines

In each quadrant, determine if the two line segments are parallel, perpendicular, or neither. Explain why.

Quadrant 1: Line AB is \qquad to Line CD because \qquad
Quadrant 1: Line EF is \qquad to Line CH because \qquad
Quadrant 1: Line II is \qquad to Line KL because \qquad
Quadrant 1: Line $M N$ is \qquad to Line OP because \qquad

