\qquad

Multipilying by 3 Using Patterns \triangle

Multiplying by 3 is easier than multiplying by other numbers because of a certain pattern. When you multiply any number by 3 , the digits of the answer must add up to a multiple of 3. Here are the multiples of 3 up to 100:
$3,6,9,12,15,18,21,24,27,30,33,36,39,42,45,48,51,54,57,60,63,66,69$, $72,75,78,81,84,87,90,93,96,99$.
$3 \times 4=12$. If you add together the two digits of the answer, you get 3 . That is because $1+2=3.3$ is the first number on the list of multiples of 3 above. This is how you know the answer is right! If the answer is not on the list above, it is wrong.
$3 \times 16=48$. Add up the two digits of the answer, $4+8=12$. Since 12 is on the list of multiples of 3 above, the answer is probably right.

Solve the multiplication problems below and check your answer using this method. Show your work.
$1.3 \times 8=$ \qquad
$2.3 \times 11=$ \qquad
$3.3 \times 14=$ \qquad
$4.3 \times 19=$ \qquad
$5.3 \times 20=$ \qquad
$6.3 \times 27=$ \qquad
Answer the question. Then, put a check by the problems that have to be wrong:
Ex: $3 \times 9=26$. Does $2+6=$ a multiple of 3 ? (In other words, is 8 on the list above?) No.
$7.3 \times 13=39$. Does $3+9=$ a multiple of 3 ? \qquad
$8.3 \times 15=45$. Does $4+5=$ a multiple of 3 ? \qquad
$9.3 \times 21=62$. Does $6+2=$ a multiple of 3 ? \qquad
$10.3 \times 26=78$. Does $7+8=$ a multiple of 3 ? \qquad
$11.3 \times 33=97$. Does $9+7=$ a multiple of 3 ? \qquad

