$x^{2} 2$ Multiplying by 2 and 5 Using Patterns $x 5^{\circ}$

Everyone should memorize the multiplication tables. Sometimes, though, there are other ways to quickly multiply and divide numbers by recognizing patterns.

For example, to multiply by 2 , you can memorize the multiplication table, or you can recognize that multiplying a number by 2 is just doubling that number. For example:
$2 \times 8=16$. Another way to find out the answer to 2×8 is to recognize that doubling $8(8+8)$ also equals 16 .

This works for bigger numbers, too. $2 \times 136=272$. Another way to find out the answer to 2×136 is to recognize that doubling $136(136+136)$ also equals 272 .

Another example of how recognizing patterns can help you multiply numbers is multiplying by 5 . Any time you multiply a number by 5 , the last digit in the answer must be either 5 or 0 . If the last digit is anything other than a 5 or 0 , it is wrong. For example:

- $5 \times 2=10$: The first digit of this answer is 1 , and the last digit is 0 .
- $5 \times 3=15$: The last digit is 5
- $5 \times 8=40$: The last digit is 0
- $5 \times 18=90$: The last digit is 0
- $5 \times 253=1,265$: The last digit is 5
- 5×12 can't be 72 because the last digit is 2 (The answer is 70)

Problems:

$2 \times 9=$ \qquad , $2 \times 11=$ \qquad , $2 \times 15=$ \qquad , $2 \times 27=$ \qquad
$2 \times 32=$ \qquad , $2 \times 77=$ \qquad , $2 \times 112=$ \qquad , $2 \times 164=$ \qquad
$2 \times 234=$ \qquad , $2 \times 367=$ \qquad , $2 \times 426=$ \qquad .
$5 \times 7=$ \qquad , $5 \times 12=$ \qquad , $5 \times 14=$ \qquad , $5 \times 17=$ \qquad
$5 \times 20=$ \qquad , $5 \times 25=$ \qquad .

Put a check by the problems that have to be wrong:
$1.5 \times 16=80$ \qquad
$2.5 \times 19=93$ \qquad
$3.5 \times 78=391$ \qquad
4. $5 \times 92=460$ \qquad
5. $5 \times 156=784$ \qquad
6. $5 \times 333=1665$

