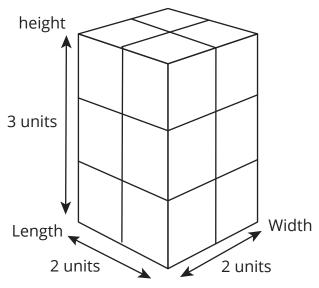
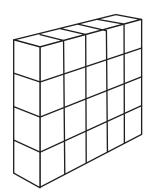


Modeling Rectangular Prisms


Name: Date:

Directions: Complete the equation for each exercise and sketch your rectangular prism. Reference the [Volume = length \times width \times height] (also known as) [V = I \times w \times h] equation. The first exercise is an example. Note: There may be more than one combination of factors!

EXAMPLE:
$$12 u^3 = 1 \times w \times h$$
;


EXAMPLE:
$$12 u^3 = I \times w \times h$$
; Volume* $12 u^3 = 2 \text{ units} \times 2 \text{ units} \times 3 \text{ units}$

Note that factors 6, 1 and 2 work here too!

1.
$$20 \text{ u}^3 = 4 \times \text{w} \times \text{h}$$

$$20 \text{ u}^3 = 4 \times \text{w} \times \text{h}$$
 Volume $20 \text{ u}^3 = 4 \times \text{w} \times \text{m}$

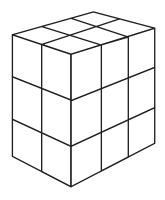
2.
$$21 u^3 = 3 \times w \times 1$$

$$21 u^3 = 3 \times w \times 1$$
 Volume $21 u^3 = 3 \times _ \times _$

Modeling Rectangular Prisms

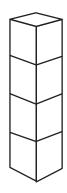
Name: Date:

Directions: Complete the equation for each exercise and sketch your rectangular prism. Reference the [Volume = length \times width \times height] (also known as) [V = I \times w \times h] equation. The first exercise is an example. Note: There may be more than one combination of factors!


EXAMPLE:
$$12 u^3 = I \times w \times h$$
;

EXAMPLE:
$$12 u^3 = I \times w \times h$$
; Volume* $12 u^3 = 2 \text{ units} \times 2 \text{ units} \times 3 \text{ units}$

Note that factors 6, 1 and 2 work here too!


3.
$$18 u^3 = 1 \times w \times h$$

3.
$$18 u^3 = I \times w \times h$$
 Volume $18u^3 = __ \times __ \times __$

4.
$$4u^3 = 4 \times w \times h$$

4.
$$4 u^3 = 4 \times w \times h$$
 Volume $4 u^3 = 4 \times w \times w$

Connections: What does it mean to be whole?