Modeling Rectangular Prisms 2

Name:
Date: \qquad
Directions: Complete the equation for each exercise and sketch your rectangular prism.
Reference the [Volume $=$ length $\times \mathbf{w i d t h} \times$ height] (also known as) [$\mathbf{V}=\mathbf{I} \times \mathbf{w} \times \mathbf{h}$] equation. The first exercise is an example. Note: There may be more than one combination of factors! EXAMPLE: $12 \mathrm{u}^{3}=\mathrm{l} \times \mathrm{w} \times \mathrm{h} ; \quad$ Volume $12 \mathrm{u}^{3}=2$ units $\times 2$ units $\times 3$ units

1. $20 u^{3}=4 \times w \times h$

Volume $20 u^{3}=$
1 unit \times \qquad units \times \qquad units
2. $15 u^{3}=3 \times w \times 1 \quad$ Volume $15 u^{3}=$

3 unit \times \qquad units \times \qquad units
\qquad
Directions: Complete the equation for each exercise and sketch your rectangular prism Reference the [Volume $=$ length \times width \times height] (also known as) [$\mathrm{V}=\mathrm{l} \times \mathrm{w} \times \mathrm{h}$] equation. The first exercise is an example. Note: There may be more than one combination of factors!
3. $18 u^{3}=\mid \times w \times h$

Volume $18 u^{3}=$ \qquad units \times \qquad units $\times \ldots$ units
4. $4 u^{3}=1 \times w \times h \quad$ Volume $4 u^{3}=1$ units \times __units \times __units

Connections: What does it mean to be whole?

