

Modeling Rectangular Prisms 2

Name: Date:

Directions: Complete the equation for each exercise and sketch your rectangular prism. Reference the [Volume = length \times width \times height] (also known as) [V = $I \times w \times h$] equation. The first exercise is an example. Note: There may be more than one combination of factors!

EXAMPLE: $12 u^3 = 1 \times w \times h$; Volume $12 u^3 = 2 \text{ units} \times 2 \text{ units} \times 3 \text{ units}$

1.
$$20 u^3 = 4 \times w \times h$$

1.
$$20 u^3 = 4 \times w \times h$$
 Volume $20 u^3 = 1 \text{ unit } \times \underline{\hspace{1cm}} \text{ units } \times \underline{\hspace{1cm}} \text{ units}$

2.
$$15 u^3 = 3 \times w \times 1$$

2.
$$15 u^3 = 3 \times w \times 1$$
 Volume $15 u^3 = 3$ unit \times units \times units

Modeling Rectangular Prisms 2

Name:	Date:
11011101	

Directions: Complete the equation for each exercise and sketch your rectangular prism Reference the [Volume = length \times width \times height] (also known as) [V = I \times w \times h] equation. The first exercise is an example. Note: There may be more than one combination of factors!

3.
$$18 u^3 = I \times w \times h$$
 Volume

3.
$$18 u^3 = I \times w \times h$$
 Volume $18 u^3 = \underline{\quad}$ units $\times \underline{\quad}$ units

$$4 \quad 4 \quad u^3 = 1 \times w \times h$$

4.
$$4u^3 = 1 \times w \times h$$
 Volume $4u^3 = 1$ units \times units \times units

Connections: What does it mean to be whole?