Interpreting Graphs of Proportional Relationships

Fill in the blanks to determine what the points mean in context.

The graph shows the proportional relationship between the time Evelyn and her friends spend sailing, *x*, and their distance from shore, *y*.

The graph shows the proportional relationship between time spent filling a pool, x, and the amount of water in the pool, y.

1. What does the point (5, 100) represent?

At ____ minutes, there are ____ gallons of water in the pool.

2. What does the point (0,0) represent?

At _____ minutes, there are _____ gallons of

water in the pool.

The graph shows the proportional relationship between the pounds of bananas purchased, x, and the total cost, y.

1. What does the point (3, \$1.80) represent?

The cost of _____ pounds of bananas is _____.

2. What does the point (6, \$3.60) represent?

The cost of _____ pounds of bananas is _____.

© ThuVienTiengAnh.Com

Interpreting Graphs of Proportional Relationships

Use the graphs to answer the questions.

The graph shows the proportional relationship between the tablespoons of vinegar, *x*, and the tablespoons of oil, *y*, needed for a salad dressing recipe.

The graph shows the proportional relationship between the time Darron rode his bike, *x*, and the distance he traveled, *y*.

1. How long did it take Darron to bike 1 mile?

2. How far did Darron bike in 36 minutes?

The graph shows the proportional relationship between the number of carnival ride tickets purchased, *x*, and the total cost, *y*.

1. What is the cost of 2 carnival ride tickets?

2. If Jane spent \$4.50 on tickets, how many tickets

did she buy? _____

© ThuVienTiengAnh.Com