\qquad

Division: Listing Multiples

List multiples for the divisor when you are solving division problems so you can quickly find the best factor in this standard algorithm approach. Directions:

1. List the product for the divisor times a factor (10, 100, etc.) of your choice.
2. Double the product and factor twice to create a list of multiples.
3. Circle the closest multiple to the dividend and follow the standard algorithm.
4. Continue steps 1-4 until your dividend is less than the divisor.
5. Answer the open-response question after each division problem.

Standard Algorithm

$4,938 \div 19$

Listed Multiples

$$
\begin{array}{l|l}
\text { _ } \times 19=\text { \# close to 4,938? } & \begin{array}{l}
\text { - } \times 19=\text { \# close to } 1,138 ? \\
10 \times 19=190 \\
100 \times 19=1900
\end{array} \\
200 \times 19=3800 \vee & 20 \times 19=380 \\
400 \times 19=7600 & 30 \times 19=570 \\
& 40 \times 19=760 \\
& 50 \times 19=950 \\
& 60 \times 19=1,140
\end{array}
$$

The multiples of 19 \qquad .There are \qquad sets of listed multiples \qquad and \qquad . I think listing multiples is \qquad .
1.

Standard Algorithm
 $2,122 \div 13$

Listed Multiples

What x 13 = a number close to 2,122 ?
$x 13=1300$
200 x $13=$ \qquad
x 13 = \qquad

What $\times 13=$ \# close to \qquad ?
\qquad $x 13=130$
$\times 13=$ \qquad
$\times 13=39$
$\times 13=$ \qquad
\qquad $\times 13=$ \qquad $\times 13=$ \qquad
\qquad $\times 13=$ \qquad
What $\times 13=$ \# close to \qquad ?
\qquad $\times 13=$

Do you think listing the multiples is helpful? Why or why not?

