Compare Like Fractions with Tape Diagrams

\qquad
Date \qquad

Compare the following fractions with tape diagrams. Use $<,>$, or $=$.
EXAMPLE: Compare $\frac{5}{8}$ and $\frac{3}{8}$.
Assign each tape diagram a fraction, shade them in by the numerator amount (how many out of the total pieces), and the comparison will be easy to see!

Γ_{5}^{-}							
$\frac{5}{8}$	$\frac{1}{8}$						
$\frac{3}{8}$	$\frac{1}{8}$						

Looking at the two fractions in these tape models you can see that $\frac{5}{8}$ is greater than $\frac{3}{8}$, so: $\frac{5}{8}>\frac{3}{8}$.

Compare $\frac{6}{8}$ and $\frac{4}{8}$. \square

Compare $\frac{9}{11}$ and $\frac{7}{11}$. \square

Compare $\frac{3}{3}$ and $\frac{1}{3}$. \square

Compare $\frac{8}{12}$ and $\frac{12}{12}$. \square

Compare $\frac{3}{7}$ and $\frac{3}{7}$. \square

