\qquad
\qquad

CAN YOU MAKE A RICHT TrIANGLE? converse of the pythacorean theorem

The converse of the Pythagorean theorem states that if the square of the longest side of a triangle is equal to the sum of the squares of the two shorter sides, then the triangle is a right triangle. In other words, if $a^{2}+b^{2}=c^{2}$, then the triangle is a right triangle.

Let's try an example! Is a triangle with side lengths of 6 feet, 16 feet, and 20 feet a right triangle?
Plug in 6,16 , and 20 into $a^{2}+b^{2}=c^{2}$ to see if the equation is true. The longest side of the triangle must be c, so let $c=20$. For the shorter sides, it doesn't matter which number you choose for a or b. Here, let $a=6$ and $b=16$.

$$
\begin{aligned}
& a^{2}+b^{2} \stackrel{?}{=} c^{2} \\
& 6^{2}+16^{2} \stackrel{?}{=} 20^{2} \\
& 36+256 \stackrel{?}{=} 400 \\
& 292 \neq 400 \\
& \text { So, this is not a right triangle. }
\end{aligned}
$$

Directions: Determine if each triangle described below is a right triangle. Circle yes or no to show your answer.

1. A triangle has sides with lengths of 9 meters, 12 meters, and 15 meters. Is it a right triangle? yes no	2. A triangle has sides with lengths of 3 inches, 5 inches, and 6 inches. Is it a right triangle? yes no
3. A triangle has sides with lengths of 4 feet, 7 feet, and 8 feet. Is it a right triangle? yes no	4. A triangle has sides with lengths of 7 meters, 24 meters, and 25 meters. Is it a right triangle? yes no
5. A triangle has sides with lengths of 11 feet, 9 feet, and 14 feet. Is it a right triangle? yes no	6. A triangle has sides with length of 30 yards, 16 yards, and 34 yards. Is it a right triangle? yes no
7. A triangle has sides with lengths of 9 inches, 41 inches, and 40 inches. Is it a right triangle? yes no	8. A triangle has sides with lengths of 24 meters, 20 meters, and 16 meters. Is it a right triangle? yes no

