SQUARE ROOTS and CUBE ROOTS

Finding a **square root** of a number is the opposite of squaring the number. The $\sqrt{}$ symbol is used to show square roots.

For example, a square root of 16 is 4.

$$\sqrt{16} = 4 \text{ since } 4^2 = 16$$

Finding the **cube root** of a number is the opposite of cubing the number. The $\sqrt[3]{}$ symbol is used to show cube roots.

For example, the cube root of 125 is 5.

$$\sqrt[3]{125} = 5$$
 since $5^3 = 125$

Find each square root.

1.
$$\sqrt{4} =$$

$$2. \sqrt{25} =$$

3.
$$\sqrt{49} =$$

4.
$$\sqrt{1} =$$

5.
$$\sqrt{9} =$$

6.
$$\sqrt{64} =$$

$$\sqrt{36} =$$

8.
$$\sqrt{144} =$$

9.
$$\sqrt{169} =$$

10.
$$\sqrt{121} =$$

11.
$$\sqrt{400} =$$

12.
$$\sqrt{225} =$$

Find each cube root.

13.
$$\sqrt[3]{8} =$$

14.
$$\sqrt[3]{1} =$$

15.
$$\sqrt[3]{27} =$$

16.
$$\sqrt[3]{512} =$$

17.
$$\sqrt[3]{343} =$$

18.
$$\sqrt[3]{1,728} =$$

19.
$$\sqrt[3]{1,331} =$$

20.
$$\sqrt[3]{729} =$$

21.
$$\sqrt[3]{1,000} =$$

CHALLENGE YOURSELF! Answer each question.

- **22.** What number has a square root of 10?
- **23.** What number has a cube root of 6?
- **24.** What is the square root of the square root of 81?