Approximating Square Roots

If you have a number that's not a perfect square, you can approximate its square root by finding the two whole numbers that the square root falls between.

Try it! Approximate $\sqrt{22}$.

Since 22 is not a perfect square, approximate $\sqrt{22}$ by first finding the two nearest perfect squares. The perfect square just below 22 is 16. The perfect square just above 22 is 25.

16 < 22 < 25

Now, find the square roots of the perfect squares.

$$\sqrt{16} < \sqrt{22} < \sqrt{25}$$

Since $\sqrt{16} = 4$ and $\sqrt{25} = 5$, $\sqrt{22}$ must be **between 4 and 5**.

$$4 < \sqrt{22} < 5$$

Approximate each square root by finding the two whole numbers that it falls between.

- 1 $\sqrt{8}$ is between _____ and _____.
- $\sqrt{10}$ is between _____ and _____.
- $\sqrt{117}$ is between _____ and ____ .
- $7 \sqrt{45}$ is between _____ and _____.
- 9 $\sqrt{66}$ is between _____ and _____.
- 11 $\sqrt{130}$ is between ____ and ____.

- $2\sqrt{28}$ is between _____ and _____.
- $\sqrt{58}$ is between _____ and ____.
- 6 $\sqrt{39}$ is between _____ and ____.
- **8** $\sqrt{84}$ is between ____ and ____ .
- 10 $\sqrt{19}$ is between _____ and _____.
- 12 $\sqrt{104}$ is between _____ and _____.

Challenge yourself! Approximate $\sqrt{50}$ by finding the two whole numbers that it falls between. Which number do you think $\sqrt{50}$ is closer to? Explain your reasoning.