Approximating Cube Roots

If you have a number that's not a perfect cube, you can approximate its cube root by finding the two whole numbers that the cube root falls between.

Try it! Approximate $\sqrt[3]{290}$.

Since 290 is not a perfect cube, approximate $\sqrt[3]{290}$ by first finding the two nearest perfect cubes. The perfect cube just below 290 is 216 . The perfect cube just above 290 is 343 .

Now, find the cube roots of the perfect cubes.
Since $\sqrt[3]{216}=6$ and $\sqrt[3]{343}=7, \sqrt[3]{290}$ must be between 6 and 7 .

$$
\begin{aligned}
\sqrt[3]{216} & <\sqrt[3]{290}<\sqrt[3]{343} \\
6 & <\sqrt[3]{290}<7
\end{aligned}
$$

Approximate each cube root by finding the two whole numbers that it falls between.
$1 \sqrt[3]{16}$ is between \qquad and \qquad .
$3 \sqrt[3]{59}$ is between \qquad and \qquad .
$5 \sqrt[3]{380}$ is between \qquad and \qquad .
$7 \sqrt[3]{134}$ is between \qquad and \qquad .
$9 \sqrt[3]{553}$ is between \qquad and \qquad .
$11 \sqrt[3]{793}$ is between \qquad and \qquad . -
$2 \sqrt[3]{5}$ is between \qquad and \qquad .
$4 \sqrt[3]{325}$ is between \qquad and \qquad .
$6 \sqrt[3]{110}$ is between \qquad and \qquad .
$8 \sqrt[3]{460}$ is between \qquad and \qquad .
$10 \sqrt[3]{902}$ is between \qquad and \qquad .
$12 \sqrt[3]{699}$ is between \qquad and \qquad .

[^0]
[^0]: Challenge yourself! Approximate $\sqrt[3]{212}$ by finding the two whole numbers that it falls between. Which number do you think $\sqrt[3]{212}$ is closer to? Explain your reasoning.

