Volume of Spheres

A sphere is a round, three-dimensional figure. You can find the volume of sphere using this formula, where ris the radius:

Let's try it! Find the volume of the sphere below. Use 3.14 as an approximation for π .

$$V = \frac{4}{3}\pi r^3$$

$$V \approx \frac{4}{3} \cdot 3.14 \cdot 3^3$$

$$V \approx \frac{4}{3} \cdot 3.14 \cdot 27$$

$$V \approx 113.04 \text{ in.}^3$$

Try it yourself! Calculate the volume of each sphere. Use 3.14 for π . Round your answer to the nearest hundredth if needed.

$$V_{\approx}$$
 33.49 m³

$$V \approx _{-}$$
 523.33 ft.³

$$V_{\approx}$$
 4,186.67 in³

$$V_{\approx}$$
 1,436.03 cm³

Volume of Spheres

Keep going! Calculate the volume of each sphere. Use 3.14 for π . Remember that the diameter of a circle is twice its radius. Round your answer to the nearest hundredth if needed.

 $V \approx 904.32 \text{ cm}^3$

 V_{\approx} 267.95 in.³

 V_{\approx} 2,143.57 ft.³

 $V \approx 3,052.08 \text{ mm}^3$

 V_{\approx} 9,198.11 in.³

 V_{\approx} 14,130 m³