## Standard Algorithm and Decimal Placement

' Decimal point placement within numbers affects the overall value of the product, or the answer to a multiplication problem. When |
' changing the decimal point within an expression, the digits in the product will stay the same but the value of each of the digits will
, change.
' In multiplication, ignoring the decimal point and multiplying the numbers as if they are whole numbers is a helpful strategy to solve ' , decimal multiplication problems. Once you have the product, then place the decimal point based on a reasonable answer.

$$
33 \times 53=1749 \quad \text { influences my answer for } \quad 3.3 \times 5.3=17.49
$$

If $\mid$ round the two decimals to the nearest whole numbers, I get 3 and 5 . I know that $3 \times 5=15$, therefore it makes sense to put my decimal point after the 17 . I guess multiplying an additional three-tenths by three-tenths is enough to create the two extra ones (e.g., $15+2=17$ ).

## Directions: Look at the expression and follow the instructions.



## 2.

## $13.4 \times 6.85$

a. Ignore the decimal point and solve for the expression using whole numbers and the standard algorithm.

$$
134 \times 65=8,710
$$

Whole number product: 8,710
b. Think about the decimal numbers and the whole number product. What would be a reasonable answer to the decimal multiplication expression?
(**Answers may vary depending on students' ability to round decimals to the nearest whole number.)

A reasonable answer for this decimal problem is 87.10 because $13 \times 7=91$. Eighty-seven is closer to ninety-one than any other number I would create if I put the decimal somewhere else.

Decimal product: $\qquad$
c. Discuss how you solved the multiplication problem and decided on the decimal placement. Write some notes here and then share your answer with a partner.

I solved the problem by turning the decimals into whole numbers and then multiplying the whole numbers to get 8,710. Then I multiplied the two numbers in the ones place from the decimals to get the product 91. My equation was $13 \times 7=91$. I placed the decimal point between the seven and one in the product to get 87.10, which is close to the product 91 .
$\qquad$
3.
a. Ignore the decimal point and solve for the expression using whole numbers and the standard algorithm.
$451 \times 57=25,707$

Whole number product: 25,707

$$
-
$$

## $45.1 \times 5.7$

b. Think about the decimal numbers and the whole number product. What would be a reasonable answer to the decimal multiplication expression?
(**Answers may vary depending on students' ability to round decimals to the nearest whole number.)

A reasonable answer for this decimal problem is 257.07 because $45 \times 6=270$. Two hundred seventy is closer to 257 than any other number I would create if I put the decimal somewhere else.
c. Discuss how you solved the multiplication problem and decided on the decimal placement. Write some notes here and then share your answer with a partner.
I solved the problem by turning the decimals into whole numbers and then multiplying the whole numbers to get 25,707 . Then I multiplied the two numbers in the ones place from the decimals to get the product 270. My equation was $45 \times 6=270$. I placed the decimal point between the seven and the zero in the product to get 257.07, which is close to the product 270.

| $4.20 .5 \times 10.5$ |  |  |
| :---: | :---: | :---: |
| a. Ignore the decimal point and solve for the expression using whole numbers and the standard algorithm. $25 \times 105=2,625$ | b. Think about the decimal numbers and the whole number product. What would be a reasonable answer to the decimal multiplication expression? <br> (**Answers may vary depending on students' ability to round decimals to the nearest whole number.) <br> A reasonable answer for this decimal problem is 26.25 because $3 \times 10=30$. Thirty is closer to 26.25 than any other number I would create if I put the decimal somewhere else. | c. Discuss how you solved the multiplication problem and decided on the decimal placement. Write some notes here and then share your answer with a partner. <br> I solved the problem by turning the decimals into whole numbers and then multiplying the whole numbers to get 2,625 . Then I multiplied the two numbers in the ones place from the decimals to get the product 30 . My equation was $3 \times 10=30$. I placed the decimal point between the six and the two in the product to get 26.25 , which is close to the product 30 . |
| Whole number product: 2,625 | Decimal product: 26.25 |  |

