\qquad

You can use substitution to solve a system of equations.

To use substitution, one of the equations needs to have a variable alone on one side. In this system, neither equation has a variable alone.	$\begin{aligned} & x-3 y=16 \\ & x+2 y=26 \end{aligned}$
Solve either equation for one of the variables. Choose the equation you think would be easier to solve. Let's solve the first equation for x. Add $3 y$ to both sides.	$\begin{aligned} x-3 y & =16 \\ x & =16+3 y \end{aligned}$
Since $x=16+3 y$, you can substitute $16+3 y$ for x in the second equation. Then solve for y.	$\begin{aligned} x+2 y & =26 \\ 16+3 y+2 y & =26 \\ 16+5 y & =26 \\ 5 y & =10 \\ y & =2 \end{aligned}$
Now that you know y, you can find x. Substitute $\mathbf{2}$ for \boldsymbol{y} in either equation to solve for x. Let's use the second equation, $x+2 y=26$.	$\begin{aligned} x+2 \boldsymbol{y} & =26 \\ x+2(\mathbf{2}) & =26 \\ x+4 & =26 \\ x & =22 \end{aligned}$

Finally, write the solution as an ordered pair. Since $x=22$ and $y=2$, the solution is $\mathbf{(2 2 , 2)}$.
Practice! Solve each system of equations using substitution.

$\begin{aligned} & y=3 x \\ & x+y=20 \end{aligned}$		$\begin{aligned} & x=3 \\ & -5 x+2 y=1 \end{aligned}$		$\begin{aligned} & 3 x+5 y=4 \\ & y=-x-2 \end{aligned}$	
	$(5,15)$		$(3,8)$		$(-7,5)$
$\begin{aligned} & y=6 x-12 \\ & y=-6 x \end{aligned}$		$\begin{aligned} & x-2 y=22 \\ & x+y=10 \end{aligned}$		$\begin{aligned} & y=3 x+12 \\ & y=-4 x+5 \end{aligned}$	
	$(1, \underline{-6})$		($14, \underline{-4}$)		$(-1,9)$
$\begin{aligned} & 2 x-y=1 \\ & 3 x+4 y=40 \end{aligned}$		$x+2 y=-16$		$5 x+7 y=16$	
		$3 x-5 y=-15$		$2 x+y=10$	
	$(4,7)$		$(-10,-3)$		6, -2)

