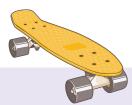
SOLVING EQUATIONS WITH CUBE ROOTS

Taking the cube root of a number is the opposite, or inverse, of cubing it. So, you can solve some equations using cube roots.



Let's try it! Solve $x^3 = -8$ for x.

$$x^3 = -8$$

$$\sqrt[3]{x^3} = \sqrt[3]{-8}$$
 Take the cube root of both sides of the equation.

$$x = -2$$
 Since $(-2)^3 = (-2) \cdot (-2) \cdot (-2) = -8$, the cube root of -8 is -2 .

In the example above, you can simplify the cube root of -8 to get -2 since -8 is a perfect cube.

Consider solving an equation like $x^3 = 15$. Because 15 is not a perfect cube, you would need to write your answer using the cube root symbol. So, the exact solution of $x^3 = 15$ is $x = \sqrt[3]{15}$.

Try it yourself! Solve each equation for the variable. Don't forget to check if you're taking the cube root of a perfect cube or not!

$b^3 = 64$	$f^3 = 2$	$z^{3} = -27$
b = 4	$f = \sqrt[3]{2}$	z = -3
$h^3 = 216$	$p^{3} = -9$	$m^3 = 512$
h = 6	$p=\sqrt[3]{-9}$	m = 8
$c^3 = -300$	$r^3 = 125$	$b^3 = -729$
$c = \sqrt[3]{-300}$	r = 5	b = -9
t ³ = 1,500	$n^3 = 1,000$	$a^3 = -1,331$
$t = \sqrt[3]{1,500}$ (or $5\sqrt[3]{12}$)	n = 10	<i>a</i> = −11
$g^3 = 3,375$	$y^3 = -27,000$	$d^3 = 6,400$
g = 15	y = -30	$d = \sqrt[3]{6,400}$ (or $4\sqrt[3]{100}$)