\qquad

Solve Cube Root

 EquationsDirections: Solve each equation for the variable. If the given number is not a perfect cube, write your answer using the cube root symbol.

(1) $\begin{aligned} h^{3} & =27 \\ h & =3 \end{aligned}$	(2)	$\begin{aligned} & v^{3}=8 \\ & v=2 \end{aligned}$	(3)	$\begin{aligned} & f^{3}=-64 \\ & f=-4 \end{aligned}$
(4) $\begin{gathered} t^{3}=18 \\ t=\sqrt[3]{18} \end{gathered}$	(5)	$\begin{aligned} & x^{3}=-1 \\ & x=-1 \end{aligned}$	(6)	$\begin{gathered} d^{3}=30 \\ d=\sqrt[3]{30} \end{gathered}$
$\text { (7) } \begin{aligned} j^{3} & =-216 \\ j & =-6 \end{aligned}$		$\begin{gathered} y^{3}=-100 \\ y=\sqrt[3]{-100} \end{gathered}$	(9)	$\begin{gathered} a^{3}=-343 \\ a=-7 \end{gathered}$
(10) $\begin{gathered} b^{3}=-1,728 \\ b=-12 \end{gathered}$		$\begin{gathered} r^{3}=1,331 \\ r=11 \end{gathered}$		$\begin{gathered} n^{3}=128 \\ \sqrt[3]{128}(\text { or } 4 \sqrt[3]{2}) \end{gathered}$
		$\begin{gathered} w^{3}=15,625 \\ w=25 \end{gathered}$		$\begin{gathered} m^{3}=-3,375 \\ m=-15 \end{gathered}$
$\begin{aligned} & \text { (16) } z^{3}=250 \\ & z=\sqrt[3]{250}(\text { or } 5 \sqrt[3]{2}) \end{aligned}$		$\begin{gathered} g^{3}=-8,000 \\ g=-20 \end{gathered}$	(18)	$\begin{gathered} c^{3}=64,000 \\ c=40 \end{gathered}$

