Slope-Intercept Form: **Writing Equations**

An equation is in **slope-intercept form** if it is written like this:

$$y = mx + b$$

In slope-intercept form, m is the slope and b is the y-intercept. If you have a graph of a line, you can write its equation in slope-intercept form.

Let's try an example!

First, identify the y-intercept. The line crosses the y-axis at (0, 2). So, the *y*-intercept is 2.

Next, find the slope using the y-intercept and another point on the line. Select a point that is easy to identify, like (3, 4). Remember that slope = $\frac{rise}{run}$. Since the rise is 2 and the run is 3, the slope of this line is $\frac{2}{3}$.

Last, write the equation of the line in slope-intercept form: $y = \frac{2}{3}x + 2$.

Try it yourself! Find the slope and y-intercept of each line. Write the slope as a simplified fraction or integer. Then, write an equation for each line in slope-intercept form.

Equation: y = 3x + 1

Slope-Intercept Form: Writing Equations

Keep going! Find the slope and *y*-intercept of each line. Write the slope as a simplified fraction or integer. Then, write an equation for each line in slope-intercept form.

$$m = \frac{-\frac{3}{2}}{}$$

Equation:
$$y = -\frac{3}{2}x + 3$$

$$m = \frac{\frac{3}{4}}{}$$
 $b = \frac{2}{}$

Equation:
$$y = \frac{3}{4}x + 4$$

$$m = \frac{-\frac{1}{2}}{b}$$
 $b = \frac{-2}{2}$

Equation:
$$y = -\frac{1}{2}x - 2$$

$$m = _{-4}$$
 $b = _{-5}$

Equation:
$$y = -4x - 5$$