Slope-Intercept Form: Graphing Lines

An equation is in slope-intercept form if it is written like this:

If you have an equation in slope-intercept form, you can use the slope and y-intercept to graph the line.

Let's try an example! Graph $y=2 x+3$.

First, plot the y-intercept. The y-intercept is 3 , so that's where the line will cross the y-axis. Place a point at (0, 3).

Next, use the slope to plot more points on the line. Remember:

$$
\text { slope }=\frac{\text { rise }}{\text { run }}
$$

The slope is 2 , or $\frac{2}{1}$. So, the rise is 2 and the run is 1 .
From the y-intercept, go up 2 and right 1 to plot another point on the line. You can also go in the opposite direction. From the y-intercept, go down 2 and left 1 to plot a third point on the line.

Once you have a few points, draw a straight line connecting them.

Try it yourself! For each equation, write the slope and y-intercept. Then, graph the line.

$$
y=3 x+1
$$

slope $=3 \quad y$-intercept $=\quad 1$
\qquad
\qquad

$$
\text { slope }=\begin{array}{ll}
\frac{1}{2} & y=\frac{1}{2} x-3 \\
\hline
\end{array}
$$

Slope-Intercept Form: Graphing Lines

Keep going! For each equation, write the slope and y-intercept. Then, graph the line.
$y=\frac{3}{4} x-2$
slope $=\underline{\frac{3}{4}}$ y-intercept $=$ \qquad -2

slope $=\underline{4} \quad y$-intercept $=\quad-1$

$$
y=4 x-1
$$

$y=-\frac{3}{2} x-3$
slope $=\underline{-\frac{3}{2}} \quad y$-intercept $=\underline{-3}$

