skivi traill itracker \#83

Find the total length of the cross-country ski trail below by finding the length of the individual segments. In each rectanglular loop, the area and one side length are given. Use the length of the individual segments. In each for each segmente area $=$ length \mathbf{x} width, so length $=$ area \div width or width the length of each unmarked

Total Trail length \qquad
© ThuVienTiengAnh.Com

Ski Trail tracker

show your work

\#1 | Length $=61 \mathrm{~m}$ |
| :--- |
| Width $=94 \mathrm{~m}$ |

Area $=5,734 m^{2}$
$6 1 \longdiv { 5 7 3 4 }$
$\begin{array}{r}-549 \\ \hline 244\end{array}$
$\frac{244}{0}$

Perimeter $=216 \mathrm{~m}$ $94+61+94+61=216$

Length $=45 \mathrm{~m}$
Width = \qquad
Area $=1,260 \mathrm{~m}^{2}$

Perimeter $=146 \mathrm{~m}$
$28+45+28+45=146$

Perimeter $=258 \mathrm{~m}$ $56+73+56+73=258$
Length $=38 \mathrm{~m}$
Width $=75 \mathrm{~m}$

Area $=2,850 \mathrm{~m}^{2}$
$7 5 \longdiv { 2 8 5 0 }$
$-\frac{225}{600}$
$\frac{600}{0}$

Perimeter $=226 \mathrm{~m}$
$38+75+38+75=226$

Use this page to organize your work and find the lengths of the missing segments on page 1. Refer to page 1 for the corresponding rectangle number and solve for the missing length or width using division. To find the total length of the trail, you can add up the individual lengths one by one, or you can solve for the perimeter of each rectangle and find the sum the perimeters. Either way, you will get the same answer!

Perimeter $=128 \mathrm{~m}$ $22+42+22+42=128$

Area $=2,520 \mathrm{~m}^{2}$

Perimeter $=212 \mathrm{~m}$
$36+70+36+70=212$
\# 4 Length = 26m
Width = 58 m
Area $=1,508 \mathrm{~m}^{2}$

Area $=2,067 \mathrm{~m}^{2}$

Perimeter $=168 \mathrm{~m}$
$58+26+58+26=168$
 Area $=1,428 \mathrm{~m}^{2}$

Perimeter $=152 \mathrm{~m}$
$42+34+42+34=152$

Perimeter $=184 \mathrm{~m}$
$39+53+39+53=184$
Fill out the spaces with the perimeters 216 m of the 9 rectangular loops and add $\quad 258 \mathrm{~m}$ them together.

128 m
168 m
184 m
146 m
226 m
212 m

TOTAL $\sim \underline{1690 \mathrm{~m}}$

