Answers

Shade It In! Multiply Fractions with Area Models

Steps:

- 1. Draw a square model that represents one whole.
- 2. Divide the model with vertical lines to show one of the fractions you are multiplying (in this example, it is divided into halves).
- 3. Shade in the fraction.
- 4. Divide the same model with horizontal lines to show the other fraction you are multiplying (in this example, it is divided into thirds).
- 5. Shade in the fraction.
- 6. Count the total parts in the model. This is the denominator in the answer. In this example, there are six total parts.
- 7. Count the parts where the shaded portions overlap. This is the numerator in the answer. In this example, two parts have overlapping shading.
- 8. Simplify the answer. In this example, $\frac{2}{6}$ can be simplified to $\frac{1}{3}$.

Shade in the models to solve each problem below.

1.
$$\frac{4}{5} \times \frac{1}{3} = \frac{4}{15}$$

2.
$$\frac{1}{4} \times \frac{2}{6} = \frac{2}{24} = \frac{1}{12}$$

Shade It In! Multiply Fractions with Area Models

Draw an area model to solve each problem below.

3.
$$\frac{1}{2} \times \frac{2}{5} = \frac{2}{10} = \frac{1}{5}$$

5.
$$\frac{1}{6} \times \frac{2}{3} = \frac{2}{18} = \frac{1}{9}$$

4.
$$\frac{3}{4} \times \frac{1}{3} = \frac{3}{12} = \frac{1}{4}$$

6.
$$\frac{1}{4} \times \frac{3}{5} = \frac{3}{20}$$

Possible Answers

- 7. As you followed the steps to multiply fractions with area models, what patterns or shortcuts did you find?
 - To find the total number of parts in the model, you can multiply the length times the width.
 - You can multiply the fractions straight across to get the answer.