\qquad
\qquad
_— POWER OF A POWER
The Power of a Power Property helps you simplify expressions that have a power raised to a power. It states that you can keep the base and multiply the exponents.

$$
\left(X^{n}\right)^{m}=X^{n \cdot m}
$$

Let's try it! Simplify $\left(7^{3}\right)^{2}$ using the Power of a Power Property.

$$
\left(7^{3}\right)^{2}=7^{3 \cdot 2}=7^{6}
$$

You can see why this property works by expanding each power and simplifying.

$$
\left(7^{3}\right)^{2}=(7 \cdot 7 \cdot 7)^{2}=(7 \cdot 7 \cdot 7) \cdot(7 \cdot 7 \cdot 7)=7 \cdot 7 \cdot 7 \cdot 7 \cdot 7 \cdot 7=7^{6}
$$

Try it yourself! Simplify each expression. Express each answer as a power.

$\left(8^{2}\right)^{4}=8^{8}$	$\left(3^{4}\right)^{5}=3^{20}$	$\left(7^{3}\right)^{6}=\ldots 7^{18}$
$\left(10^{8}\right)^{2}=\underline{10^{16}}$	$\left(4^{5}\right)^{10}=4^{50}$	$\left(5^{7}\right)^{7}=\ldots 5^{49}$
$\left(2^{9}\right)^{6}=$	$\left(8^{7}\right)^{4}=\ldots 8^{28}$	$\left(11^{8}\right)^{8}=\underline{11^{64}}$
$\left(9^{9}\right)^{8}=9^{72}$	$\left(5^{6}\right)^{11}=\ldots 5^{66}$	$\left(6^{12}\right)^{7}=6^{84}$
$\left(12^{6}\right)^{14}=\underline{12^{84}}$	$\left(3^{18}\right)^{7}=3^{126}$	$\left(15^{8}\right)^{23}=\ldots 15^{184}$

