Kinetic Energy, Mass, and Speed: Part 1

Kinetic energy is energy of motion. The kinetic energy of an object depends on its mass and speed.

Use the information in the tables to answer the questions below. The first one is done for you as an example.

1. Kenneth and Rachel are skating at the local ice rink. Fill in the blanks to compare the two skaters.

Ice Skater	Mass (kg)	Speed (m⁄s)	Kinetic Energy (J)
Kenneth	100	4	800
Rachel	50	4	400

- a. Kenneth's mass is <u>2 times</u> Rachel's mass.
- b. Kenneth's speed is <u>equal to</u> Rachel's speed.
- c. Kenneth's kinetic energy is <u>2 times</u> Rachel's kinetic energy.

2. A wildebeest and a lion are running in the grassland. Fill in the blanks to compare the two mammals.

Mammal	Mass (kg)	Speed (m⁄s)	Kinetic Energy (kJ)
Wildebeest	250	20	50
Lion	125	20	25

- a. The lion's mass is <u>2</u> the wildebeest's mass.
- b. The lion's speed is <u>equal to</u> the wildebeest's speed.
- c. The lion's kinetic energy is $\frac{\overline{2}}{2}$ the wildebeest's kinetic energy.
- 3. A horse and her foal are galloping on the beach. Fill in the blanks to compare the two horses.

Horse	Mass (kg)	Speed (m⁄s)	Kinetic Energy (hJ)
Charlie	600	12	432
Spirit	200	12	144

a. Charlie's mass is <u>3 times</u> Spirit's mass.

- b. Charlie's speed is <u>equal to</u> Spirit's speed.
- c. Charlie's kinetic energy is <u>3 times</u> Spirit's kinetic energy.
- 4. Two bowling balls are rolling down separate lanes in a bowling alley. Based on what you've learned about the relationship between kinetic energy and mass from the questions above, complete the table.

Bowling Ball	Mass (kg)	Speed (m⁄s)	Kinetic Energy (J)
Purple Ball	6	6	108
Orange Ball	3	6	54

Kinetic Energy, Mass, and Speed: Part 1

Keep going! Answer the questions below.

5. Mike and Drew are swimming in the pool at the Homestead Community Center. Fill in the blanks to compare the two swimmers.

Swimmer	Mass (kg)	Speed (m⁄s)	Kinetic Energy (J)
Mike	72	1	36
Drew	72	2	144

- a. Drew's mass is <u>equal to</u> Mike's mass.
- b. Drew's speed is <u>2 times</u> Mike's speed.
- c. Drew's kinetic energy is <u>4 times</u> Mike's kinetic energy.
- 6. Brianna takes her two dogs, Abby and Snoopy, to run around the dog park. Fill in the blanks to compare the two dogs.

Dog	Mass (kg)	Speed (m⁄s)	Kinetic Energy (J)	a. Abby's mass is <u>equal to</u> Snoopy's mass.
Abby	30	7	735	 b. Abby's speed is <u>2</u> Snoopy's speed. c. Abby's kinetic energy is <u>1</u> <u>4</u> Snoopy's
Snoopy	30	14	2,940	kinetic energy.

7. Kati and Cambray are both running on the field during their soccer match. Fill in the blanks to compare the two soccer players.

Soccer Player	Mass (kg)	Speed (m⁄s)	Kinetic Energy (J)
Kati	54	6	972
Cambray	54	2	108

- a. Kati's mass is <u>equal to</u> Cambray's mass.
- b. Kati's speed is <u>3 times</u> Cambray's speed.
- c. Kati's kinetic energy is <u>9 times</u> Cambray's kinetic energy.
- 8. Karen and Jhanvi are riding bikes around their neighborhood. Based on what you've learned about the relationship between kinetic energy and speed from the questions above, complete the table.

Biker	Mass (kg)	Speed (m⁄s)	Kinetic Energy (J)
Karen	52	16	6,656
Jhanvi	52	8	<u>1,664</u>