\qquad

Irregular Volume Shapes

Volume is the measure of space inside of a solid object.
Volume is measured in cubic units ($\mathrm{mm}^{3}, \mathrm{ft}^{3}$).

Directions: Calculate the volume of the shapes and explain how you got your answer.

Show your work.

Shape A: $\quad 9 \mathrm{ft} \times 8 \mathrm{ft} \times 2 \mathrm{ft}$

$$
V=144 \mathrm{ft}^{3}
$$

Shape B: $\quad 5 \mathrm{ft} \times 3 \mathrm{ft} \times 2 \mathrm{ft}$

$$
V=30 \mathrm{ft}^{3}
$$

Total Volume: $144 \mathrm{ft}^{3}+30 \mathrm{ft}^{3}$

Explain your answer.

I separated the irregular shape into two rectangular prisms. Then, I calculated the volume for shape A as
$144 \mathrm{ft}^{3}$ and the volume for shape B as $30 \mathrm{ft}^{3}$. Lastly, I added the two volumes to get the total volume of $174 \mathrm{ft}^{3}$.

Show your work.

Shape A: $8 \mathrm{~mm} \times 5 \mathrm{~mm} \times 17 \mathrm{~mm}$

$$
\mathrm{V}=680 \mathrm{~mm}^{3}
$$

Shape B: $\quad 11 \mathrm{~mm} \times 5 \mathrm{~mm} \times 7 \mathrm{~mm}$

$$
V=385 \mathrm{~mm}^{3}
$$

Total Volume: $680 \mathrm{~mm}^{3}+385 \mathrm{~mm}^{3}$

Explain your answer.

I separated the irregular shape into two rectangular prisms. Then, I calculated the volume for shape A as $680 \mathrm{~mm}^{3}$ and the volume for shape B as $385 \mathrm{~mm}^{3}$. Lastly, I added the two volumes to get the total volume of $1,065 \mathrm{~mm}^{3}$.

