Illustrating Mixed Number Products
 as Area Models

Name: \qquad Date: \qquad

When multiplying a whole number by a fraction, it can be helpful to show the result using an area model. This can be done in a few easy steps!

Consider $9 \times \frac{1}{8} \quad$ Step 1: Split the whole number into two factors: $91 / 8=(3 \times 3) \times 1 / 8$ (This will insure you have a rectangular illustration.)

Step 2: Draw the area model grid for length times height and include the fraction in each grid section.

$\frac{1}{8}$	$\frac{1}{8}$	$\frac{1}{8}$
$\frac{1}{8}$	$\frac{1}{8}$	$\frac{1}{8}$
$\frac{1}{8}$	$\frac{1}{8}$	$\frac{1}{8}$

3

Step 3: Group fraction grid sections in easy chunks (like 1, 1/2, or 1/3) and add them:

$$
\frac{1}{2}+\frac{1}{2}+\frac{1}{8}=\mathbf{1} \frac{1}{8}
$$

Step One Exercises

Directions: Rewrite each expression to show each whole number as two factors and illustrate your area model grid with fraction parts.

1. $8 \times \frac{1}{6}=$
$(2 \times 4) \times \frac{1}{6}$

2. $9 \times \frac{1}{2}=$
$(3 \times 3) \times \frac{1}{2}$

3. $7 \times \frac{1}{3}=$
1

| $\frac{1}{3}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |

$(7 \times 1) \times \frac{1}{3}$

Illustrating Mixed Number Products as Area Models

Name: \qquad Date: \qquad

Step Two Exercises

Directions: For each model above, group and shade your fraction parts in easy chunks (like 1, 1/2, or 1/3) and add them.

1. $8 \times \frac{1}{6}=$
$8 \times \frac{1}{6}=1 \frac{2}{6}$
2. $9 \times \frac{1}{2}=$

$$
9 \times \frac{1}{2}=4 \frac{1}{2}
$$

3. $7 \times \frac{1}{3}=$

$$
7 \times \frac{1}{3}=2 \frac{1}{3}
$$

$$
\frac{8}{2}=4 \text { whole }+\frac{1}{2}
$$

$$
\frac{6}{3}=2 \text { whole }+\frac{1}{3}
$$

Say More About That!

Describe two things an area model reveals about a mixed number product.
Answers may vary, but student responses should reflect on end result area models for mixed number products.
\qquad
\qquad
\qquad
\qquad

