\qquad Identifying Complementary, Supplementary, Vertical, and Adjacent Angles

Complementary angles have a sum of 90°.
Here, $\angle 1$ and $\angle 2$ are complementary angles.

Vertical angles are opposite angles that form when two lines intersect. Vertical angles are congruent. Here, there are two sets of vertical angles:
$\angle 1$ and $\angle 3 \quad \angle 2$ and $\angle 4$

Try it out! Answer each question.

Supplementary angles have a sum of 180°. Here, $\angle 1$ and $\angle 2$ are supplementary angles.

Adjacent angles share a common vertex and side. Here, $\angle 1$ and $\angle 2$ are adjacent angles.

1) Name an angle that is adjacent to $\angle 1 . \angle 2$ or $\angle 6$
2) Name a pair of angles that are complementary.

$\angle 1$ and $\angle 2$ or $\angle 4$ and $\angle 5$$\quad$| 4) Name a pair of vertical angles. $\angle 1$ and $\angle 4$, |
| :--- |
| $\angle 2$ and $\angle 5$, or $\angle 3$ and $\angle 6$ |

Identifying Complementary, Supplementary,
Vertical, and Adjacent Angles
Keep going! Answer each question.

	1) Name the angle that is vertical to $\angle 1 . \leq 4$
	2) Name an angle that is adjacent to $\angle 3 . \angle 2$ or $\angle 4$
	3) Name an angle that is adjacent to $\angle 2 . \angle 1$ or $\angle 3$
	4) Which angle is complementary to $\angle 4$? $\angle 3$
	5) Which angle is supplementary to $\angle 5$? $\angle 1$ or $\angle 4$
	6) Name three angles that are supplementary.
	$\angle 2, \angle 3$, and $\angle 4$
(1) Name an angle that is adjacent to $\angle 4 . \angle 3$ or $\angle 5$	
	2) Name the angle that is vertical to $\angle 6 . \angle 3$
	3) Name the angle that is vertical to $\angle 5 . \angle 2$
	4) Which angle is supplementary to $\angle 3$? $\angle 6$
	5) Name the angle that is complementary to $\angle 2$, other than $\angle 1$. $\angle 4$
	6) Name three angles that are supplementary.
	$\angle 1$ (or $\angle 4$), $\angle 2$ (or $\angle 5$), and $\angle 3$ (or $\angle 6$) *
	*many variations of the correct answer

