\qquad Date

Identify Proportional Relationships From Tables

Two variables have a proportional relationship if all the ratios between them are equivalent.
Find the ratios to determine whether each table represents a proportional relationship. Then circle yes or no for each table. The first ratio has been written for you.

x	y	Ratio of y to x
2	8	$\frac{8}{2}=4$
5	20	$\frac{20}{5}=4$
8	32	$\frac{32}{8}=4$
12	48	$\frac{48}{12}=4$

Does this table show a proportional relationship?
Yes

\mathbf{q}	\boldsymbol{r}	Ratio of r to \mathbf{q}
10	5	$\frac{5}{10}=\frac{1}{2}$
16	8	$\frac{8}{16}=\frac{1}{2}$
20	9	$\frac{9}{20}$
26	13	$\frac{13}{26}=\frac{1}{2}$

Does this table show a proportional relationship?

Yes

No

\boldsymbol{a}	\boldsymbol{b}	Ratio of \boldsymbol{b} to \boldsymbol{a}
3	8	$\frac{8}{3}=2 \frac{2}{3}$
4	10	$\frac{10}{4}=2 \frac{1}{2}$
5	12	$\frac{12}{5}=2 \frac{2}{5}$
6	14	$\frac{14}{6}=2 \frac{1}{3}$

Does this table show a proportional relationship?
Yes
No

\boldsymbol{c}	\boldsymbol{d}	Ratio of d to \boldsymbol{c}
6	90	$\frac{90}{6}=15$
5	75	$\frac{75}{5}=15$
3	45	$\frac{45}{3}=15$
2	30	$\frac{30}{2}=15$

Does this table show a proportional relationship?
Yes No
\qquad Date

Identify Proportional Relationships From Tables

Keep going! Determine whether each table represents a proportional relationship, and explain how you know. Explanations may vary.

\boldsymbol{m}	\boldsymbol{n}
10	15
12	20
16	24
21	$\frac{20}{12}=1 \frac{1}{2}$
$\frac{24}{36}=1 \frac{1}{2}$	
$\frac{35}{21}=1 \frac{2}{3}$	

\boldsymbol{e}	\boldsymbol{f}
24	18
48	36
56	42
84	63
$\frac{36}{24}=\frac{3}{4}$	
$\frac{42}{56}=\frac{3}{4}$	
$\frac{63}{84}=\frac{3}{4}$	

Does this table show a proportional relationship? Explain how you know. No, this table does not show a proportional relationship. The ratios of n to m are not all equivalent to each other.

\boldsymbol{j}	\boldsymbol{k}
2	21
3	32
4	43
5	$\frac{21}{2}=10 \frac{1}{2}$
$\frac{32}{3}=10 \frac{2}{3}$	
$\frac{54}{5}=10 \frac{3}{4}$	

Does this table show a proportional relationship? Explain how you know. No, this table does not show a proportional relationship. The ratios of k to jare not all equivalent to each other.

Does this table show a proportional relationship? Explain how you know. Yes, this table shows a proportional relationship. The ratios of f to e are all equivalent to $\frac{3}{4}$.

\boldsymbol{g}	\boldsymbol{h}
60	24
70	28
80	32
90	36
$\frac{28}{70}=\frac{2}{5}$	
$\frac{32}{80}=\frac{2}{5}$	
90	$=\frac{2}{5}$

Does this table show a proportional relationship? Explain how you know. Yes, this table shows a proportional relationship. The ratios of h to g are all equivalent to $\frac{2}{5}$.

