\qquad

Division: Listing Multiples ANSWERS

Multiples may vary, but the quotient should be the same.
List multiples for the divisor when you are solving division problems so you can quickly find the best factor in this standard algorithm approach. Directions:

1. List the product for the divisor times a factor (10, 100, etc.) of your choice.
2. Double the product and factor twice to create a list of multiples.
3. Circle the closest multiple to the dividend and follow the standard algorithm.
4. Continue steps $1-4$ until your dividend is less than the divisor.
5. Answer the open-response question after each division problem.

6.

Standard Algorithm
$2,122 \div 13$

163 R 3
13

-1300
$\begin{array}{r}712 \\ 8222\end{array}$
$\begin{array}{r}-780 \\ \hline 3^{3} 27\end{array}$
39
$-\quad 3$

Listed Multiples

What x 13 = a number close to 2,122 ?

$$
\begin{aligned}
& 1 \not \emptyset \times 13=1300 \\
& \hdashline 200 \times 13=\underline{2600} \\
& \hline 400 \times 13=\underline{5200} \\
& \hline
\end{aligned}
$$

What $\times 13=$ \# close to 822 ?

10	$\times 13=130$
20	$\times 13=260$
30	$\times 13=390$
40	$x 13=520$
50	x $13=\underline{650}$
60	$\times 13=780$
70	$\times 13=\underline{910}$

What $\times 13=$ \# close to 42 ? ?
$\frac{5}{4} \times 13=\frac{65}{52}$
$3 \times 13=\frac{39}{3} \times 13=$
\qquad $\times 13=$ \qquad

Do you think listing the multiples is helpful? Why or why not? Student answers will vary. It may have been easier to find a factor even closer to 2,122 after discovering $200 \times 13=2600$. I know the quotient will be less than 200 at this point.

2.	Standard Algorithm $\begin{aligned} & 1,906 \div 10 \\ & 1 0 \longdiv { 1 9 0 6 } \text { R } 6 \\ & \begin{array}{r} -1000 \\ 906 \\ -900 \\ 6 \end{array} \end{aligned}$	Listed Multiples \qquad x $10=$ \# close to 1,906 ? $\begin{aligned} & 1 d \phi \times 10=1,000 V \\ & 200 \times 10=2,000 \end{aligned}$ \qquad x 10 = \# close to 906 ? $\begin{aligned} & 10 \times 10=100 \\ & 20 \times 10=200 \\ & 30 \times 10=300 \\ & 40 \times 10=400 \\ & 50 \times 10=500 \\ & 60 \times 10=600 \\ & 70 \times 10=700 \\ & 80 \times 10=800 \\ & 90 \times 10=900 \end{aligned}$
Do you think listing the multiples is helpful? Why or why not? Student answers will vary. Listing multiples can be helpful even though I already know that $90 \times 10=900$. The multiples remind me of the true values of the numbers I am subtracting when completing the standard algorithm.		

