CONVERSE OF THE PYTHAGOREAN THEOREM: IS IT A RIGHT TRIANGLE?

b

The converse of the Pythagorean theorem states that if $a^{2}+b^{2}=c^{2}$, then the triangle is a right triangle.

Use the converse of the Pythagorean theorem to determine if each triangle described below is a right triangle. Circle yes or no to show your answer.

1. A triangle has sides with lengths of 4 inches, 5 inches, and 6 inches. Is it a right triangle?

$$
\begin{aligned}
4^{2}+5^{2} & \stackrel{?}{=} 6^{2} \\
16+25 & =36
\end{aligned}
$$

yes
no
3. A triangle has sides with lengths of 8 feet, 15 feet, and 17 feet. Is it a right triangle?

$$
\begin{array}{r}
8^{2}+15^{2} \stackrel{?}{=} 17^{2} \\
64+225=289
\end{array}
$$

yes no
5. A triangle has sides with lengths of 12 inches, 8 inches, and 15 inches. Is it a right triangle?

$$
\begin{aligned}
8^{2}+12^{2} & =15^{2} \\
64+144 & =225
\end{aligned}
$$

yes
no
7. A triangle has sides with lengths of 9 meters, 41 meters, and 40 meters. Is it a right triangle?

$$
\begin{gathered}
9^{2}+40^{2} \stackrel{2}{=} 41^{2} \\
81+1,600=1,681
\end{gathered}
$$

no
9. A triangle has sides with lengths of 72 meters, 32 meters, and 60 meters. Is it a right triangle?

2. A triangle has sides with lengths of 5 meters, 12 meters, and 13 meters. Is it a right triangle?

$$
\begin{aligned}
5^{2}+12^{2} & \stackrel{2}{=} 13^{2} \\
25+144 & =169
\end{aligned}
$$

yes no
4. A triangle has sides with lengths of 9 centimeters, 10 centimeters, and 14 centimeters. Is it a right triangle? $9^{2}+10^{2} \stackrel{?}{=} 14^{2}$

$$
81+100 \neq 196
$$

yes

no
6. A triangle has sides with lengths of 16 feet, 12 feet, and 20 feet. Is it a right triangle?

$$
\begin{gathered}
12^{2}+16^{2} \stackrel{?}{=} 20^{2} \\
144+256=400
\end{gathered}
$$

yes no
8. A triangle has sides with lengths of 11 feet, 61 feet, and 60 feet. Is it a right triangle?

$$
\begin{gathered}
11^{2}+60^{2} \stackrel{?}{=} 61^{2} \\
121+3,600=3,721
\end{gathered}
$$

10. A triangle has sides with lengths of 50 inches, 14 inches, and 48 inches. Is it a right triangle?

$$
\begin{aligned}
& 14^{2}+48^{2} \stackrel{?}{=} 50^{2} \\
& 196+2,304=2,500 \\
& \text { yes no }
\end{aligned}
$$

