\qquad

Approximating Square Roots

If you have a number that's not a perfect square, you can approximate its square root by finding the two whole numbers that the square root falls between.

Try it! Approximate $\sqrt{\mathbf{2 2}}$.

Since 22 is not a perfect square, approximate $\sqrt{22}$ by first finding the two nearest perfect squares. The perfect square just below 22 is 16 . The perfect square just above 22 is 25.

Now, find the square roots of the perfect squares.
Since $\sqrt{16}=4$ and $\sqrt{25}=5, \sqrt{22}$ must be between 4 and 5 .

$$
16<22<25
$$

$$
\begin{aligned}
\sqrt{16} & <\sqrt{22}<\sqrt{25} \\
4 & <\sqrt{22}<5
\end{aligned}
$$

Approximate each square root by finding the two whole numbers that it falls between.

$1 \sqrt{8}$ is between \qquad and \qquad .
$3 \sqrt{10}$ is between \qquad 3 and \qquad 4 . .
$5 \sqrt{117}$ is between \qquad and \qquad 11 .
$7 \sqrt{45}$ is between \qquad 6 and \qquad 7 _.
$6 \sqrt{39}$ is between \qquad 6 _ and \qquad .
$8 \sqrt{84}$ is between \qquad and \qquad 10
$10 \sqrt{19}$ is between \qquad 4 and \qquad 5
$9 \sqrt{66}$ is between \qquad and \qquad 9 .
$11 \sqrt{130}$ is between \qquad 11 and \qquad 12 .
$2 \sqrt{28}$ is between \qquad and \qquad 6
$4 \sqrt{58}$ is between \qquad and \qquad 8 .
-
$\sqrt{84}$ is between . .
$12 \sqrt{104}$ is between \qquad and \qquad 11 .

Challenge yourself! Approximate $\sqrt{50}$ by finding the two whole numbers that it falls between. Which number do you think $\sqrt{50}$ is closer to? Explain your reasoning.

Sample answer: $\sqrt{50}$ is between 7 and 8 . Since 50 is closer to 49 than it is to 64 , you would expect $\sqrt{50}$
to be closer to $\sqrt{49}$ or 7 .

