Approximating Cube Roots

If you have a number that's not a perfect cube, you can approximate its cube root by finding the two whole numbers that the cube root falls between.

Try it! Approximate $\sqrt[3]{290}$.

Since 290 is not a perfect cube, approximate $\sqrt[3]{290}$ by first finding the two nearest perfect cubes. The perfect cube just below 290 is 216. The perfect cube just above 290 is 343.

Now, find the cube roots of the perfect cubes.

Since $\sqrt[3]{216} = 6$ and $\sqrt[3]{343} = 7, \sqrt[3]{290}$ must be **between 6 and 7**.

$$\sqrt[3]{216} < \sqrt[3]{290} < \sqrt[3]{343}$$

$$6 < \sqrt[3]{290} < 7$$

Approximate each cube root by finding the two whole numbers that it falls between.

- 1 $\sqrt[3]{16}$ is between ____ 2 and ___ 3 .
- $3\sqrt[3]{59}$ is between 3 and 4.
- **5** $\sqrt[3]{380}$ is between _____ 7 ___ and ____ 8 ___ .
- 7 $\sqrt[3]{134}$ is between 5 and 6.
- **9** $\sqrt[3]{553}$ is between _____8 and ____9 .
- 11 $\sqrt[3]{793}$ is between 9 and 10 .

- 2 $\sqrt[3]{5}$ is between _____1 and ____2 .
- 4 $\sqrt[3]{325}$ is between 6 and 7.
- 6 $\sqrt[3]{110}$ is between _____4 and ____5.
- 8 $\sqrt[3]{460}$ is between _____7 and ____8 .
- **10** $\sqrt[3]{902}$ is between _____ 9 ___ and ____ 10 ___ .
- 12 $\sqrt[3]{699}$ is between 8 and 9 .

Challenge yourself! Approximate $\sqrt[3]{212}$ by finding the two whole numbers that it falls between. Which number do you think $\sqrt[3]{212}$ is closer to? Explain your reasoning.

Sample answer: $\sqrt[3]{212}$ is between 5 and 6. Since 212 is closer to 216 than it is to 125, you would expect

 $\sqrt[3]{212}$ to be closer to $\sqrt[3]{216}$ or 6.