What's Your Angle? Dth
 Grade

Table of Contents

What's Your Angle?

Aye Aye, Area! \#1 *
Aye Aye, Area! \#2 *
Aye Aye, Area! \#3 *
Aye Aye, Area! \#4 *
Aye Aye, Area! \#5 *
Angle Steering *
Treehouse Triangles \#1 *
Treehouse Triangles \#2 *
Treehouse Triangles \#3 *
Treehouse Triangles \#4*
Treehouse Triangles \#5 *
Acute Triangle: Find the Missing Base *
Obtuse Triangle: Find the Missing Base *

Certificate of Completion
Answer Sheets

* Has an Answer Sheet

$\mathbf{M} \mathbf{A} \quad \mathbf{T}$ of GEOMETRY
 Aye Aye, Area! -1 -

Calculate the area of the sail by finding the areas of the smaller triangles.
Remember, triangle area $=\mathbf{1 / 2}$ (base \mathbf{x} height)

Sail area: \qquad

$\begin{array}{lccc}\mathbf{M} & \mathbf{A} \quad \text { T } & \mathbf{H} & \text { of } \\ \text { GEOMETRY }\end{array}$

Aye Aye, Area!

Calculate the area of the sail by finding the areas of the smaller triangles.
Remember, triangle area $=\mathbf{1 / 2}$ (base \mathbf{x} height)

6
\qquad

$\begin{array}{llll}\text { M A T } & \text { T } & \text { H } \\ \text { GEOMETRY of }\end{array}$
 Aye Aye, Area! -3.

Calculate the area of the sail by finding the areas of the smaller triangles.
Remember, triangle area $=\mathbf{1 / 2}$ (base \mathbf{x} height)

Calculate the area of the sails by finding the areas of the smaller triangles.
Remember, triangle area $=\mathbf{1 / 2}$ (base \mathbf{x} height)

$$
\text { Area }=1 / 2(6 \times 5)=15 \text { square feet }
$$

6
sail 2
sail 1

Sail 1 area: \qquad
Sail 2 area: \qquad

\section*{	$\mathbf{M} \mathbf{A} \quad \mathbf{T}$	\mathbf{H}	\boldsymbol{B}_{8}
GEOMETRY			 Aye Aye,Area! }

Calculate the area of the sails by finding the areas of the smaller triangles.
Remember, triangle area $=\mathbf{1 / 2}$ (base \mathbf{x} height)

Area $=1 / 2(6 \times 5)=15$ square feet

$\mathbf{M} \quad$ A \quad T G E O M ETRY

Steering a ship requires practice and precision. It also requires you to think about math and angles.

Turn the ship's wheel according to the angle measurements given. See the examples below. With each new turn, indicate the ship's new direction by drawing a line towards it. Turn clockwise if the angle is positive, counterclockwise if it is negative. Use a ruler to help you draw straight lines.

| 1 | $\mathbf{2}$ | $\mathbf{3}$ | $\mathbf{4}$ | $\mathbf{5}$ | 6 | $\mathbf{7}$ | | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Turn
 Degrees | $+25^{\circ}+94^{\circ}$ | -35° | -20° | $+190^{\circ}$ | -17° | $+67^{\circ}$ | $+51^{\circ}$ | -19° | -121° | -42° | $+146^{\circ}$ | |
| New
 Direction | 25° | 119° | | | | | | | | | | |

$\mathbf{M} \mathbf{A} \quad \mathbf{T} \quad \mathbf{H}$ G E O M ETRY

Treehouse Triengtes

Help Buster the Builder find the missing angles of the rooms in the treehouse he is building. Remember, all interior angles in a triangle add up to 180 degrees. When you're done, grab some coloring tools to make your new treehouse plans unique. Add decorations,

\section*{| $\mathbf{M} A \quad \mathbf{T} \quad \mathbf{H}$ |
| :--- | :---: | :---: | :---: |
| G E O M ETRY |}

ๆโeeไouse すtiangles

Help Buster the Builder find the missing angles of the rooms in the treehouse he is building. Remember, all interior angles in a triangle add up to 180 degrees. When you're done, grab some coloring tools to make your new treehouse plans unique. Add decorations, furniture, appliances, and most importantly, draw yourself in there too!

$\begin{array}{lccc}\mathbf{M} & \mathbf{A} \quad \mathbf{T} & \mathbf{H} \\ \text { G E O M ETRY }\end{array}$

Treeไouse ปโtiengles

 Help Buster the Builder find the missing angles of the rooms in the treehouse he is building. Remember, all interior angles in a triangle add up to 180 degrees. When you're done, grab some coloring tools to make your new treehouse plans unique. Add decorations, furniture, appliances, and most importantly, draw yourself in there too!
$\mathbf{M} \mathbf{A} \quad \mathbf{T} \quad \mathbf{H}$ G E O M ETRY

Treehouse Triangles

Help Buster the Builder find the missing angles of the rooms in the treehouse he is building. Remember, all interior angles in a triangle add up to 180 degrees. When you're done, grab some coloring tools to make your new treehouse plans unique. Add decorations, furniture, appliances, and most importantly, draw

Treehouse Truangles

 Help Buster the Builder find the missing angles of the rooms in the treehouse he is building. Remember, all interior angles in a triangle add up to 180 degrees. When you're done, grab some coloring tools to make your new treehouse plans unique. Add decorations, furniture, appliances, and most importantly, draw yourself in there too!
© ThuVienTiengAnh.Com

Use the clues provided to find the base of each triangle. Show your work.

Review:
Triangle Area $=\frac{1}{2} \times$ base x height
The base of a triangle can be any one of its sides.
The height is the distance from a base to its opposite point, or vertex.
A base must be perpendicular to its height.

Acute Triangle is a triangle that has three acute angles (angles that measure between 0 and 90 degrees).

$$
\begin{aligned}
& \text { Area }=32 \\
& \text { Height }=8 \\
& \text { sq.ft. } \\
& \text { ft. }
\end{aligned}
$$

$$
\begin{aligned}
\text { Area } & =\frac{1}{2} \times \text { base } \times \text { height } \\
32 & =\frac{1}{2} \times \text { base } \times 8
\end{aligned}
$$

Therefore, base $=\frac{32 \times 2}{8}=\underline{8} \mathrm{ft}$.

Area $=$ \qquad sq.ft.
Height = \qquad ft .
Area $=\frac{1}{2} x$ base x height

Therefore, base = $=$ \qquad ft .
Area = \qquad sq.ft.

Height = \qquad ft.
Area $=\frac{1}{2} x$ base x height

Therefore, base = $=$ \qquad ft.

Area = \qquad sq.ft.
Height = \qquad ft.
Area $=\frac{1}{2} x$ base x height

Therefore, base =
$=$ \qquad ft .

Obtuse Triangle: Find the Missing Base

 Use the clues provided to find the base of each triangle. Show your work.
Review:

Triangle Area $=\frac{1}{2} \times$ base \times height
The base of a triangle can be any one of its sides.
The height is the distance from a base to its opposite point, or vertex.
A base must be perpendicular to its height.

Obtuse Triangle is a triangle that has one obtuse angle (angle that measures between 90 and 180 degrees).

$$
\begin{aligned}
& \text { Area }=\frac{48}{} \text { sq.ft. } \\
& \text { Height }=12
\end{aligned}
$$

$$
\begin{aligned}
\text { Area } & =\frac{1}{2} \times \text { base } \times \text { height } \\
48 & =\frac{1}{2} \times \text { base } \times 12
\end{aligned}
$$

Therefore, base $=\frac{48 \times 2}{12}=$ \qquad ft .

2

Area $=$ \qquad sq.ft.
Height = \qquad ft.
Area $=\frac{1}{2} x$ base x height

Therefore, base =
$=$ \qquad ft.

$$
0
$$

Therefore, base -

Area $=$ \qquad sq.ft.
Height = \qquad ft.
Area $=\frac{1}{2} x$ base x height
\qquad ft .

Area $=$ \qquad sq.ft.
Height = \qquad ft.
Area $=\frac{1}{2} x$ base x height

Therefore, base =

Answer Sheets

What's Your Angle?

Aye Aye, Area! \#1
Aye Aye, Area! \#2
Aye Aye, Area! \#3
Aye Aye, Area! \#4
Aye Aye, Area! \#5
Angle Steering
Treehouse Triangles \#1
Treehouse Triangles \#2
Treehouse Triangles \#3
Treehouse Triangles \#4
Treehouse Triangles \#5
Acute Triangle: Find the Missing Base
Obtuse Triangle: Find the Missing Base

Answer Sheet

ANSWER SHEET

Aye Aye,Area!

Calculate the area of the sail by finding the areas of the smaller triangles.
Remember, triangle area =1/2 (base \mathbf{x} height)

Area $=1 / 2(6 \times 5)=15$ square feet

1. Triangle 1 area $=1 / 2$ (base x height)

$$
=1 / 2(13 \times 2.5)=1 / 2 \times 32.5=16.25
$$

2. Triangle 2 area $=1 / 2$ (base x height)

$$
=1 / 2(8 \times 2)=1 / 2 \times 16=8
$$

3. Triangle 3 area $=1 / 2$ (base x height)

$$
=1 / 2(11 \times 6)=1 / 2 \times 66=33
$$

4. Triangle 4 area $=1 / 2$ (base x height)

$$
=1 / 2(10 \times 3)=1 / 2 \times 30=15
$$

5. Triangle 5 area $=1 / 2$ (base x height)

$$
=1 / 2(8.5 \times 6.5)=1 / 2 \times 55.25=27.63
$$

6. Triangle 6 area $=1 / 2$ (base x height)

$$
=1 / 2(9 \times 2)=1 / 2 \times 18=9
$$

Sail area: $=16.25+8+33+15+27.63+9$

$=108.88$ square feet

Answer Sheet

ANSWER SHEET

Aye Aye,Area!

Calculate the area of the sail by finding the areas of the smaller triangles.

Remember, triangle area =1/2 (base \mathbf{x} height)

Area $=1 / 2(6 \times 5)=15$ square feet

1. Triangle 1 area $=1 / 2$ (base x height)

$$
=1 / 2(9 \times 5)=1 / 2 \times 45=22.5
$$

2. Triangle 2 area $=1 / 2$ (base x height)

$$
=1 / 2(16 \times 3)=1 / 2 \times 48=24
$$

3. Triangle 3 area $=1 / 2$ (base x height)

$$
=1 / 2(11 \times 19)=1 / 2 \times 209=104.5
$$

4. Triangle 4 area $=1 / 2$ (base x height)

$$
=1 / 2(22 \times 3)=1 / 2 \times 66=33
$$

5. Triangle 5 area $=1 / 2$ (base x height)

$$
=1 / 2(10 \times 4)=1 / 2 \times 40=20
$$

6. Triangle 6 area $=1 / 2$ (base x height)

$$
=1 / 2(9 \times 6)=1 / 2 \times 54=27
$$

Sail area: $=22.5+24+104.5+33+20+27$

$=\underline{231}$ square feet

6.

4^{\prime}

Answer Sheet

MEOMETRY ${ }^{\text {Het }}$ Aye Aye, Area!

ANSWER SHEET

Calculate the area of the sail by finding the areas of the smaller triangles.
Remember, triangle area $=1 / 2$ (base \mathbf{x} height)

6

1. Triangle 1 area $=1 / 2$ (base x height)

$$
=1 / 2(6 \times 6)=1 / 2 \times 36=18
$$

2. Triangle 2 area $=1 / 2$ (base x height)

$$
=1 / 2(15 \times 8)=1 / 2 \times 120=60
$$

3. Triangle 3 area $=1 / 2$ (base x height)

$$
=1 / 2(8 \times 7)=1 / 2 \times 56=28
$$

4. Triangle 4 area $=1 / 2$ (base x height)

$$
=1 / 2(9 \times 2)=1 / 2 \times 18=9
$$

5. Triangle 5 area $=1 / 2$ (base x height)

$$
=1 / 2(4 \times 3)=1 / 2 \times 12=6
$$

6. Triangle 6 area $=1 / 2$ (base x height)

$$
=1 / 2(12 \times 11)=1 / 2 \times 132=66
$$

Sail area: $=18+60+28+9+6+66$

$=187$ square feet

Answer Sheet

Answer Sheet

Calculate the area of the sails by finding the areas of the smaller triangles.
Remember, triangle area =1/2 (base \mathbf{x} height)

Area $=1 / 2(6 \times 5)=15$ square feet

1. Triangle I area $=I / 2(28 \times 7)=I / 2 \times 196=98^{\prime}$
2. Triangle 2 area $=1 / 2(22 \times 6)=1 / 2 \times 132=66^{\prime}$
3. Triangle 3 area $=1 / 2(8 \times 2)=1 / 2 \times 16=8$,
4. Triangle 4 area $=1 / 2(8 \times 13)=1 / 2 \times 104=52^{\prime}$

Sail 1 area: $=98+66+8+52$
$=\underline{224}$ square feet
5. Triangle $5=1 / 2(6 \times 3)=1 / 2 \times 18=9^{\prime}$
6. Triangle $I=I / 2(9 \times 2)=I / 2 \times I 8=9$ '

Sail 2 area: $=9+9$
= 18 square feet

Answer Sheet

Answer Sheet

Steering a ship requires practice and precision. It also requires you to think about math and angles.

Turn the ship's wheel according to the angle measurements given. See the examples below. With each new turn, indicate the ship's new direction by drawing a line towards it. Turn clockwise if the angle is positive, counterclockwise if it is negative. Use a ruler to help you draw straight lines.

| | $\mathbf{1}$ | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Turn
 Degrees | $+25^{\circ}+94^{\circ}$ | -35° | -20° | $+190^{\circ}$ | -17° | $+67^{\circ}$ | $+51^{\circ}$ | -19° | -121° | -42° | $+146^{\circ}$ | |
| New
 Direction | 25° | 119° | 84° | 64° | 254° | 237° | 304° | 355° | 336° | 215° | 173° | 319° |

WHAT DIRECTION IS THE BOAT FACING AFTER

Answer Sheet

$\begin{array}{lccc}\mathbf{M} & \mathbf{A} \quad \mathbf{T} & \mathbf{H} & \text { of } \\ \text { G E O M ETRY }\end{array}$

ANSWERS

Treehouse ๆriangle

Help Buster the Builder find the missing angles of the rooms in the treehouse he is building. Remember, all interior angles in a triangle add up to 180 degrees. When you're done, grab some coloring tools to make your new treehouse plans unique. Add decorations, furniture, appliances, and most importantly, draw yourself in there too!

Answer Sheet

$\begin{array}{lccc}\mathbf{M} & \mathbf{A} \quad \mathbf{T} & \mathbf{H} & \text { of } \\ \text { G E O M ETRY }\end{array}$

ANSWERS

Treehouse Titiangles

Help Buster the Builder find the missing angles of the rooms in the treehouse he is building. Remember, all interior angles in a triangle add up to 180 degrees. When you're done, grab some coloring tools to make your new treehouse plans unique. Add decorations, furniture, appliances, and most importantly, draw yourself in there too!

Answer Sheet

$\begin{array}{lcccc}\mathbf{M} \quad \mathbf{A} & \mathbf{T} & \mathbf{H} & \mathscr{B}_{8} \\ \text { G E O M ETRY }\end{array}$

Treehouse Triancles

ANSWERS

Help Buster the Builder find the missing angles of the rooms in the treehouse he is building. Remember, all interior angles in a triangle add up to 180 degrees. When you're done, grab some coloring tools to make your new treehouse plans unique. Add decorations, furniture, appliances, and most importantly, draw yourself in there too!

Answer Sheet

$\mathbf{M} \mathbf{A} \quad \mathbf{T} \quad \mathbf{H}$ of G E O M ETRY

Treehouse Titienctes

Help Buster the Builder find the missing angles of the rooms in the treehouse he is building. Remember, all interior angles in a triangle add up to 180 degrees. When you're done, grab some coloring tools to make your new treehouse plans unique. Add decorations, furniture, appliances, and most importantly, draw yourself in there too!

ANSWERS

Answer Sheet

gind Acute Triangle: Find the missing base
 Use the clues provided to find the base of each triangle. Show your work.

Review:

Triangle Area $=\frac{1}{2} \times$ base \times height
The base of a triangle can be any one of its sides.
The height is the distance from a base to its opposite point, or vertex.
A base must be perpendicular to its height.

Acute Triangle is a triangle that has three acute angles (angles that measure between 0 and 90 degrees).

Area $=$ \qquad sq.ft.
Height $=\underline{8} \mathrm{ft}$.
Area $=\frac{1}{2} \times$ base x height
$32=\frac{1}{2} \times$ base $\times 8$

Area $=42$ sq.ft.
Height = 7 ft.
Area $=\frac{1}{2} x$ base x height

$$
42=\frac{1}{2} \times B \times 7
$$

Therefore, base $=\frac{42 \times 2}{7}=12$ ft .
Area $=$ \qquad sq.ft.

Height = \qquad ft.

$$
\begin{aligned}
\text { Area } & =\frac{1}{2} \times \text { base } \times \text { height } \\
56 & =\frac{1}{2} \times B \times 14
\end{aligned}
$$

Therefore, base $=\frac{56 \times 2}{14}=8 \quad f$

Area $=27$ sq.ft.
Height $=\ldots \quad 6 \quad \mathrm{ft}$.
Area $=\frac{1}{2} \times$ base x height

$$
27=\frac{1}{2} \times B \times 6
$$

Therefore, base $=\frac{27 \times 2}{6}=$ \qquad 9 ft .

Therefore, base $=\frac{48 \times 2}{12}=\underline{8} \mathrm{ft}$.

Area $=\quad 91$ sq. ft.
(2)

Height $=13 \mathrm{ft}$.
Area $=\frac{1}{2} \times$ base \times height

$$
91=\frac{1}{2} \times B \times 13
$$

Therefore, base $=\frac{91 \times 2}{13}=$ \qquad 14 ft .

Height $=7 \quad \mathrm{ft}$.
Area $=\frac{1}{2} \times$ base x height

$$
52.5 \frac{=1}{2} \times B \times 7
$$

Therefore, base $=\frac{52.5 \times 2}{7}=$ \qquad 15 ft .

Area $=\frac{48}{}$ sq. ft.
Height $=12 \quad \mathrm{ft}$.

$$
\begin{aligned}
\text { Area } & =\frac{1}{2} \times \text { base } \times \text { height } \\
48 & =\frac{1}{2} \times \text { base } \times 12
\end{aligned}
$$

\qquad

4

Area $=$ \qquad sq.ft.
Height $=11 \mathrm{ft}$.
Area $=\frac{1}{2} \times$ base x height

$$
33=\frac{1}{2} \times B \times 11
$$

Therefore, base $=\frac{33 \times 2}{11}=$ \qquad 6 ft .

