Computation Station

2

2
${ }^{4}$ Tricks I

3

100

Table of Contents

Computation Station

Find the Patterns! Addition *
Find the Patterns! Multiplication *
Multiplying by 10, 100, or 1,000! *
Relating Single Digit Addition to a Double Digit *
Using Estimation: Knowing What's Too Big and Too Small *
Using Rounding Up or Down to Estimate an Answer *
Mixed Problems Requiring Estimation *
Fast Addition Moving Left to Right: The Break Down *
Fast Addition Moving Left to Right *
Multiplying by 2 and 5 Using Patterns *
Dividing by 2 and 3 Using Patterns *
Multiplying by 3 Using Patterns *
Mixed Problems *
Multiplying by 9 Using Patterns *
Multiplying by 6 Using Patterns *
Certificate of Completion
Answer Sheets
* Includes Answer Sheet

Find the Patterns! Addition

Addition facts are easier when you know the patterns! Take a look at the addition table below: Do you notice any patterns?

+	0	1	2	3	4	5	6	7	8	9	10	11	12
0	0	1	2	3	4	5	6	7	8	9	10	11	12
1	1	2	3	4	5	6	7	8	9	10	11	12	13
2	2	3	4	5	6	7	8	9	10	11	12	13	14
3	3	4	5	6	7	8	9	10	11	12	13	14	15
4	4	5	6	7	8	9	10	11	12	13	14	15	16
5	5	6	7	8	9	10	11	12	13	14	15	16	17
6	6	7	8	9	10	11	12	13	14	15	16	17	18
7	7	8	9	10	11	12	13	14	15	16	17	18	19
8	8	9	10	11	12	13	14	15	16	17	18	19	20
9	9	10	11	12	13	14	15	16	17	18	19	20	21
10	10	11	12	13	14	15	16	17	18	19	20	21	22
11	11	12	13	14	15	16	17	18	19	20	21	22	23
12	12	13	14	15	16	17	18	19	20	21	22	23	24

These patterns follow three main rules. Review the rules below and then complete the exercise below:

Rule One. The even numbers on the above table are 2, 4, 6, 8, 10, and 12. When you add any even number to another even number, your answer will be an even number.
EX:
$2+2=4 \quad 4$ is an even number.
$6+12=18 \quad 18$ is an even number.
Rule Two. The odd numbers on the above table are 1, 3, 5, 7, 9, and 11. When you add any even number to an odd number, your answer will be an odd number.
EX: $3+4=7 \quad 7$ is an odd number.
Rule Three. When you add any number to itself, your answer will always be an even number.
EX:
$4+4=8 \quad 8$ is an even number.
$5+5=10 \quad 10$ is an even number (Even though 5 is an odd number!)

Based on the three rules above, pay attention to whether the answer is even or odd. Put a check next to the answers that have to be wrong:

1. $4+8=12$ \qquad
2. $6+8=17$ \qquad
3. $42+24=65$ \qquad
$4.16+18=23$ \qquad
4. $102+86=188$
5. $1002+144=1,143$ \qquad
6. $3+8=11$ \qquad
7. $3+12=16$ \qquad
8. $3+42=45$ \qquad
9. $3+34=38$ \qquad
10. $3+110=114$ \qquad
11. $3+3,654=3,657$
12. $6+6=12$
13. $66+66=132$ \qquad
14. $666+666=1,331$
15. $24+24=48=$ \qquad
16. $22+22=43=$
17. $3,432+3,432=6,865$

Find the Patterns! Multiplication

Similar to addition facts, multiplication facts follow patterns, too. Observe the multiplication table below.

	1	2	3	4	5	6	7	8	9	10	11	12
1	1	2	3	4	5	6	7	8	9	10	11	12
2	2	4	6	8	10	12	14	16	18	20	22	24
3	3	6	9	12	15	18	21	24	27	30	33	36
4	4	8	12	16	20	24	28	32	36	40	44	48
5	5	10	15	20	25	30	35	40	45	50	55	60
6	6	12	18	24	30	36	42	48	54	60	66	72
7	7	14	21	28	35	42	49	56	63	70	77	84
8	8	16	24	32	40	48	56	64	72	80	88	96
9	9	18	27	36	45	54	63	72	81	90	99	108
10	10	20	30	40	50	60	70	80	90	100	110	120
11	11	22	33	44	55	66	77	88	99	110	121	132
12	12	24	36	48	60	72	84	96	108	120	132	144

Review the three multiplication rules and complete the exercise.

Rule One.

When you multiply any number by an even number the product is always even. $3 \times 4=123$ is an odd number, but 4 is even. Notice that the product, 12 , is even.
$2 \times 6=12 \quad 2,6$, and 12 are all even.

Rule Two.

When you multiply any number by 3 , the digits of the product always add up to a multiple of 3 .

The multiples of 3 up to 100 are as follows:
$3,6,9,12,15,18,21,24,27,30,33,36,39,42,45,48,51$
$54,57,60,63,66,69,72,75,78,81,84,87,90,93,96,99$.

EX:
$3 \times 4=12$.
Add: $1+2=3$.
3 is a multiple of 3 because $3 \times 1=3$
$3 \times 12=36$.
Add: $3+6=9$.
9 is a multiple of 3 because $3 \times 3=9$

Rule Three.

When you multiply any number by 5 , the last digit of the answer has to be either 5 or 0 .

EX:
$5 \times 3=15$ The last digit of the product is 5 .
$5 \times 12=60$, and notice that the last digit of the answer is 0 .

Based on the three rules above, put a check next to the answers that have to be wrong:

1. $6 \times 8=48$
2. $24 \times 14=336$ \qquad
3. $16 \times 28=447$ \qquad
4. $30 \times 32=960$ \qquad
$5.146 \times 86=12,556$ \qquad
5. $152 \times 92=13,985$ \qquad
6. $3 \times 11=33$ \qquad
7. $3 \times 12=35$ \qquad
8. $3 \times 21=63$ \qquad
9. $3 \times 13=38$ \qquad
10. $3 \times 25=75$ \qquad
11. $3 \times 30=91$ \qquad
$13.5 \times 4=20$ \qquad
12. $5 \times 12=72$ \qquad
13. $5 \times 17=85$ \qquad
14. $5 \times 18=88$ \qquad
15. $5 \times 20=100$ \qquad
$18.5 \times 22=106$ \qquad

Multiplying by 10, 100, or 1,000

Multiplying any number by 10, 100, or even 1,000 is easy if you know these tricks.

If you have to multiply any number by 10 , just place a 0 at the end of the original number.
$E X: 10 \times 14=140$
If you have to multiply a number by 100 , just place two 0 s at the end of the original number.
$E X: 100 \times 14=1400$
And if you have to multiply a number by 1,000, just place three 0s at the end of the original number.
$E X: 1000 \times 14=14,000$
Answer the following problems:
$10 \times 24=240$

1. $10 \times 12=$ \qquad
2. $10 \times 32=$ \qquad
3. $10 \times 87=$ \qquad
4. $10 \times 376=$ \qquad
5. $10 \times 6,395=$ \qquad
$100 \times 24=2,400$
$6.100 \times 16=$ \qquad
$7.100 \times 38=$ \qquad
6. $100 \times 94=$ \qquad
7. $100 \times 672=$ \qquad
8. $100 \times 4,936=$
$1,000 \times 24=24,000$
9. $1,000 \times 17=$ \qquad
10. $1,000 \times 39=$ \qquad
11. $1,000 \times 91=$ \qquad
12. $1,000 \times 289=$ \qquad
13. $1,000 \times 3,386=$

Relating Single Digit Addition to a Double Digit.

If you know that $3+5=8$ you can easily solve $30+50$ because you don't have to worry about adding numbers in the ones column.

$$
\begin{array}{r}
30=3 \text { tens } \\
+\quad 50=5 \text { tens } \\
\hline 80=8 \text { tens }
\end{array}
$$

You can use the same rule to add numbers with three digits, or even 4 digits. For example,

$$
\begin{array}{r}
300=3 \text { hundreds } \\
+\quad 500=5 \text { hundreds } \\
\hline 800=8 \text { hundreds }
\end{array}
$$

Just take off the zeros and add the numbers. Then, make sure you put the zeros back! Let's try it with different numbers:

$$
\begin{aligned}
& 6+5=11 \\
& 60+50+110 \\
& 600+500=1,100
\end{aligned}
$$

Now, use this rule to add the following numbers. Write the correct answers on the following blanks:

1. $4+8=12$

$$
\begin{aligned}
& 40+80= \\
& 400+800=1,200
\end{aligned}
$$

2. $4+3=7$
$40+30=70$
$400+300=$
3. $12+16=28$
$120+160=280$
$1,200+1,600=$
4. $14+17=$
$140+170=$
$1,400+1,700=$
5. $4+1=$
$40+10=$
$400+100=$ \qquad
$150+180=330$
$1,500+1,800=$
6. $18+36=$
$180+360=$
$1,800+3,600=$

Using Estimation: Knowing What's Too Big and Too Small

Adding and subtracting large numbers can sometimes be difficult. Estimating is an easy way to figure out if your answer is close, or if you need to try again.

EX:
$227+631=$ \qquad
This looks hard. But there are some things you can know right awayjust by looking at it.
For example, what if you had an answer like 78?
You should know immediately that it must be wrong.
A 3-digit number + a 3-digit number can never equal a 2-digit number. It's too small!
OR, what if you had an answer like 12,428?
You should also know this is wrong.
A 3-digit number + a 3-digit number can never equal a 5-digit number. It's way too big!

If $227+631$ is a difficult problem for you, you can still estimate an answer.
You should be able to determine that the answer probably has 3 digits or, at most, 4 digits. (The actual answer is 858, a large three-digit number.)
Note: The same thing is true for subtraction.
Answer the following multiple choice problems. None of the possible answers are correct, but one is closer to the correct answer than any of the others. Pick the answer provided that is closest to the correct answer.
$1.428+298=$
4. $856-32=$
a. 650
a. 800
b. 65
b. 8,000
c. 6,500
c. 80
2. $82+45=$
$\begin{array}{ll}\text { a. } 11 & \text { a. } 72 \\ \text { b. } 1,100 & \text { b. } 720 \\ \text { c. } 110 & \text { c. } 7,200\end{array}$

3. $634+56=$

a. 6,700
b. 67
c. 670
\qquad

Using RoundingUPor Down to Estimatean Answer

What is easier to do in your in head?

$$
\begin{aligned}
& 800+100 \\
& \text { OR } \\
& 372+621 ?
\end{aligned}
$$

You probably chose $800+100$. All you have to do is add $8+1$ and add two zeros. Sometimes when you need a quick answer that doesn't have to be exact, you can estimate by rounding.

Let's take $372+621$ again. How can we turn this into an easy problem with lots of zeros? You can do this by rounding to the nearest hundred.

1. Look at the number in the tens place, the one immediately to the right of the hundreds place.
2. If it is 5 or over, round up to the next hundred by adding 1 to the hundreds place.
3. For 372 , the tens digit is 7. It's 5 or greater, so we add 1 to 3 and get 4 in the hundreds place. 4 \qquad .
4. What do we put in the tens and ones place? We put zeros because we have rounded up. 400.
5. Let's do the same with 621. Because 2 is less than 5 , we round down to the nearest hundred which is 6 .

Now it's time to do the addition
$400+600=1,000$.
This is our estimated answer. What's the exact answer? It's 993, which is pretty close in value.

Answer the following multiple choice questions by rounding up or rounding down the numbers in the problem provided. None of the possible answers is correct, but one is closer to the correct answer than any of the others. Pick the approximate answer provided that is closest to the correct answer.

1. $328+598=$
a. 800
b. 80
c. 8,000
2. $52+49=$
a. 10
b. 1,000
c. 100
3. $784+81=$
a. 8,800
b. 88
c. 880
4. $756-39=$
a. 7,000
b. 700
c. 70
5. $4,124-139=$
a. 39
b. 390
c. 3,900

Mixed Problems Requiring Estimation

None of the possible answers are correct, but one is closer to the correct answer than any of the others. Pick the answer provided that is closest to the correct answer.

1.327+516 =	a. 80	b. 800	c. 8,000
2. $689+173=$	a. 900	b. 9,000	c. 90
3. $542+198=$	a. 7,000	b. 70	c. 700
4. $263+77=$	a. 38	b. 380	c. 3,800
5. $482+237=$	a. 600	b. 700	C. 800
6. $617-426=$	a. 200	b. 2,000	c. 20
7. $387+187=$	a. 60	b. 6,000	c. 600
8. $871-329=$	a. 60	b. 600	c. 6,000
9. $352-51=$	a. 300	b. 30	c. 3,000
10. $78+491=$	a. 5,800	b. 580	c. 58
11. $789+821=$	a. 1,600	b. 1,500	c. 1,700
12. $835-263=$	a. 400	b. 500	c. 700

Challenge:

1. $4,279+2,912=$
a. 70,000
b. 7,000
c. 700
2. $3,897+5,267=$ \qquad
a. 8,000
b. 80,000
c. 800
3. $5,933-3,361=$ \qquad a. 300
b. 3,000
c. 30,000

Fast Addition Moving Left to Right The Break Down

One way to add large numbers quickly is to break down the second number into smaller parts and then add all the parts from left to right. For example:
$34+27=$ \qquad is hard to do in your head. So, let's break it down.

27 is the same as $20+7$.
Once you know this, the original problem becomes: $34+20+7=$ \qquad .
Now add this in your head:
$34+20=54$.
Then, $54+7=61$.
You have your answer: $34+27=61$.
Here's another example in 4 steps:
$48+87=$ \qquad

1. Rewrite the second number: $87=80+7$.
2. Write the new problem:
$48+80+7=$ \qquad
3. Add left to right
$48+80=128$. Now add the $7128+7=135$.
135 is the answer!
Write the number that should go where the blank spaces are in the following three-part solutions using the adding left to right method:
4. $31+23=$
a. $23=20+$ \qquad
b. $31+20+3=$
c. $31+20=51$. Then, $51+$ \qquad $=54$. The answer is 54 .
5. $44+67=$
a. $67=$ \qquad $+7$
b. $44+60+7=$
c. $44+60=104$. Then, $104+$ \qquad $=111$. The answer is 111.
6. $27+52=$
a. $52=$ \qquad $+$ \qquad
b. \qquad $+50+2=$
c. \qquad $+50=77$. Then, $77+$ \qquad $=79$. The answer is 79 .

Fast Addition Moving Left to Right

Fast addition moving left to right is done in three steps. The three steps are as follows: The problem is $32+23=$ \qquad

* Step One: Rewrite the second number: $23=20+3$
* Step Two: Write the new problem: $32+20+3=$ \qquad
* Step Three: Add left to right: $32+20=52$. Then, $52+3=55$. The answer is 55 .

In answering the problems below, use the three-step format (show your work):

Here's one more example before you do the rest of the problems by yourself. Fill in the blank spaces:
$37+55=$
a. $55=50+$ 5
b. $37+50+5=$
c. $37+50=87$. Then, $87+\ldots \quad=92$. The answer is 92.

1. $27+54=$ \qquad
\qquad
2. $41+35=$ \qquad
$3.18+77=$
3. $36+36=$
4. $62+26=$
5. $51+44=$

$x^{2} 2$ Multiplying by 2 and 5 Using Patterns $x 5^{\circ}$

Everyone should memorize the multiplication tables. Sometimes, though, there are other ways to quickly multiply and divide numbers by recognizing patterns.

For example, to multiply by 2 , you can memorize the multiplication table, or you can recognize that multiplying a number by 2 is just doubling that number. For example:
$2 \times 8=16$. Another way to find out the answer to 2×8 is to recognize that doubling $8(8+8)$ also equals 16 .

This works for bigger numbers, too. $2 \times 136=272$. Another way to find out the answer to 2×136 is to recognize that doubling $136(136+136)$ also equals 272 .

Another example of how recognizing patterns can help you multiply numbers is multiplying by 5 . Any time you multiply a number by 5 , the last digit in the answer must be either 5 or 0 . If the last digit is anything other than a 5 or 0 , it is wrong. For example:

- $5 \times 2=10$: The first digit of this answer is 1 , and the last digit is 0 .
- $5 \times 3=15$: The last digit is 5
- $5 \times 8=40$: The last digit is 0
- $5 \times 18=90$: The last digit is 0
- $5 \times 253=1,265$: The last digit is 5
- 5×12 can't be 72 because the last digit is 2 (The answer is 70)

Problems:

$2 \times 9=$ \qquad , $2 \times 11=$ \qquad , $2 \times 15=$ \qquad , $2 \times 27=$ \qquad
$2 \times 32=$ \qquad , $2 \times 77=$ \qquad , $2 \times 112=$ \qquad , $2 \times 164=$ \qquad
$2 \times 234=$ \qquad , $2 \times 367=$ \qquad , $2 \times 426=$ \qquad .
$5 \times 7=$ \qquad , $5 \times 12=$ \qquad , $5 \times 14=$ \qquad , $5 \times 17=$ \qquad
$5 \times 20=$ \qquad , $5 \times 25=$ \qquad .

Put a check by the problems that have to be wrong:
$1.5 \times 16=80$ \qquad
$2.5 \times 19=93$ \qquad
$3.5 \times 78=391$ \qquad
4. $5 \times 92=460$ \qquad
5. $5 \times 156=784$ \qquad
6. $5 \times 333=1665$
\qquad

Dividingoy2mad3Singhatutums

Everyone should memorize the multiplication tables. Sometimes, though, there are other ways to quickly multiply and divide numbers by recognizing patterns.

To divide by 2 you can memorize the multiplication table, or you can recognize that dividing a number by 2 is just figuring out what half of the number is. For example:

6 divided by $2=3$. Half of 6 is 3 . You know this because $3+3$ is 6 . So, if you know half of 6 is 3 , then you know how to divide by 2 .

This works for bigger numbers too. 860 divided by $2=430$. This means that $430+430=860$ (which also means that 430 is half of 860). And 1,428 divided by $2=714$. This means that $714+714=1,428$ (which also means that 714 is half of 1,428).

To divide by 3 you can memorize the multiplication table, or you can recognize that dividing a number by 3 is just figuring out what one-third of the number is. For example:

6 divided by $3=2$. One-third of 6 is 2 . You know this because $2+2+2$ is 6 . So, if you know one-third of 6 is 2 , then you know how to divide by 3 .

This works for bigger numbers, too. 963 divided by $3=321$. This means that $321+321+321=963$ (which also means that 321 is one-third of 963). And 3,369 divided by $3=1,123$. This means that $1,123+1,123+1,123=3,369$ (which also means that 1,123 is one-third of 3,369).

Solve the division problems below using this method, and explain your answer.
Ex: 42 divided by $2=\ldots \ldots .21+21=42$. Therefore, half of $42=21$.

1. 40 divided by $2=$ \qquad .
2. 44 divided by $2=$ \qquad .
3. 68 divided by $2=$ \qquad .
4. 100 divided by $2=$ \qquad .
5. 146 divided by $2=$ \qquad .

Ex: 42 divided by 3 = \qquad $.14+14+14=42$. Therefore, one-third of 42 is 14.
6. 9 divided by $3=$ \qquad .
7. 15 divided by $3=$ \qquad .
8. 21 divided by $3=$ \qquad .
9. 33 divided by $3=$ \qquad .
10. 51 divided by $3=$ \qquad .
\qquad

Multipilying by 3 Using Patterns \triangle

Multiplying by 3 is easier than multiplying by other numbers because of a certain pattern. When you multiply any number by 3 , the digits of the answer must add up to a multiple of 3. Here are the multiples of 3 up to 100:
$3,6,9,12,15,18,21,24,27,30,33,36,39,42,45,48,51,54,57,60,63,66,69$, $72,75,78,81,84,87,90,93,96,99$.
$3 \times 4=12$. If you add together the two digits of the answer, you get 3 . That is because $1+2=3.3$ is the first number on the list of multiples of 3 above. This is how you know the answer is right! If the answer is not on the list above, it is wrong.
$3 \times 16=48$. Add up the two digits of the answer, $4+8=12$. Since 12 is on the list of multiples of 3 above, the answer is probably right.

Solve the multiplication problems below and check your answer using this method. Show your work.
$1.3 \times 8=$ \qquad
$2.3 \times 11=$ \qquad
$3.3 \times 14=$ \qquad
$4.3 \times 19=$ \qquad
$5.3 \times 20=$ \qquad
$6.3 \times 27=$ \qquad
Answer the question. Then, put a check by the problems that have to be wrong:
Ex: $3 \times 9=26$. Does $2+6=$ a multiple of 3 ? (In other words, is 8 on the list above?) No.
$7.3 \times 13=39$. Does $3+9=$ a multiple of 3 ? \qquad
$8.3 \times 15=45$. Does $4+5=$ a multiple of 3 ? \qquad
$9.3 \times 21=62$. Does $6+2=$ a multiple of 3 ? \qquad
$10.3 \times 26=78$. Does $7+8=$ a multiple of 3 ? \qquad
$11.3 \times 33=97$. Does $9+7=$ a multiple of 3 ? \qquad

\because Mixed Problems $\%$

Review the multiplication and division patterns, then solve the problems below.

Multiplying by 2: Recognize that multiplying a number by 2 isjust doubling that number. For example: $2 \times 8=16$. Another way to find out the answer to 2×8 is to recognize that doubling $8(8+8)$ also equals 16 .

Multiplying by 5: Any time you multiply a number by 5, the last digit in the answer must be either 5 or 0 . If the last digit is anything other than a 5 or 0 , it is wrong.

Dividing by 2: Recognize that dividing a number by 2 is just figuring out what half of the number is. For example: 6 divided by $2=3$. Half of 6 is 3 . You know this because $3+3$ is 6 . So, if you know half of 6 is 3 , then you know how to divide by 2.

Multiplying by 3: Multiplying by 3 is easier than you think because of a certain pattern. When you multiply any number by 3 , the digits of the answer must add up to a multiple of 3 . For example, $3 \times 4=12$. If you add together the two digits of the answer, you get 3 . That is because $1+2=3$.

$2 \times 4=$	$2 \times 50=$	$, 2 \times 13=$		$\times 22$	2×27
2×47	2	$2 \times 41=$	2×28	$2 \times 45=$, $2 \times 39=$
$5 \times 7=$	$5 \times$, $5 \times$	5	, 5×17	, $5 \times 18=$
$5 \times 20=$	$5 \times 21=$, $5 \times 22=$, $5 \times 30=$, $5 \times 31=$, $5 \times 32=$

6 divided by $2=$ \qquad , 12 divided by 2 = \qquad , 14 divided by 2 = \qquad ,

20 divided by $2=$ \qquad , 22 divided by $2=$ \qquad , 24 divided by $2=$ \qquad ,

30 divided by 2 = \qquad , 40 divided by 2 = \qquad , 50 divided by 2 = \qquad ,

46 divided by 2 = \qquad .
$3 \times 4=$ \qquad , $3 \times 11=$ \qquad , $3 \times 12=$ \qquad , $3 \times 13=$ \qquad , $3 \times 20=$ \qquad , $3 \times 21=$ \qquad
$3 \times 22=$ \qquad , $3 \times 30=$ \qquad , $3 \times 31=$ \qquad , $3 \times 32=$ \qquad , $3 \times 40=$ \qquad , $3 \times 41=$ \qquad

Multiplying by OUsing Patterns

Unlike with other numbers, multiplying any single-digit number by 9 results in a recognizable pattern. For example:
$2 \times 9=18 \quad \mathbf{1 + 8}=9$
$3 \times 9=27 \quad 2+7=9$
$4 \times 9=36 \quad 3+6=9$
$5 \times 9=45 \quad 4+5=9$
You should notice that $2 \times 9=18$ and that adding together the two digits of the answer equals 9 . In other words, $1+8=9$.

Fill out the rest of the chart by writing the correct number on the blank spaces.
$6 \times 9=54 \quad 5+\mathbf{4}=\mathbf{9}$
$7 \times 9=63 \quad+\quad=9$
$8 \times 9=72 \quad Z_{+}+\ldots=9$
$9 \times 9=81 \quad{ }^{-}+\ldots=9$

Does this pattern work for 9×10 ? Yes or No?

Does it work for 9×11 ? Yes or No?

Multiplying by 6 Using Patterns *6

Unlike with other numbers, multiplying even numbers by 6 results in a recognizable pattern. For example:
$6 \times 2=12$
$6 \times 4=24$
$6 \times 6=36$
$6 \times 8=48$
You should notice that the number that is multiplied by six (the second number in the equations above) is the same as the last digit of the answer. For example, if you multiply 6 by 2 , the last digit of the answer is also 2 . (The answer is 12 .) This happens every time you multiply six by an even number. (This doesn't work for odd numbers.)
Write the correct number on the blank spaces.
$1.6 \times 10=60$
$2.6 \times 12=$ \qquad
$3.6 \times 14=$ \qquad
4. $6 \times 16=$ \qquad

Challenge questions:
$5.6 \times 18=$ \qquad
$6.6 \times 26=$ \qquad
$7.6 \times 42=$ \qquad
$8.6 \times 74=$ \qquad

© ThuVienTiengAnh. Com

Answer Sheets

Computation Station

Find the Patterns! Addition
Find the Patterns! Multiplication
Multiplying by 10, 100, or 1,000 !
Relating Single Digit Addition to a Double Digit Using Estimation: Knowing What's Too Big and Too Small
Using Rounding Up or Down to Estimate an Answer
Mixed Problems Requiring Estimation
Fast Addition Moving Left to Right: The Break Down
Fast Addition Moving Left to Right
Multiplying by 2 and 5 Using Patterns
Dividing by 2 and 3 Using Patterns
Multiplying by 3 Using Patterns
Mixed Problems
Multiplying by 9 Using Patterns
Multiplying by 6 Using Patterns

Answer Sheet

Name \qquad Date

Find the Patterns! Addition

Addition facts are easier when you know the patterns! Take a look at the addition table below: Do you notice any patterns?

+	0	1	2	3	4	5	6	7	8	9	10	11	12
0	0	1	2	3	4	5	6	7	8	9	10	11	12
1	1	2	3	4	5	6	7	8	9	10	11	12	13
2	2	3	4	5	6	7	8	9	10	11	12	13	14
3	3	4	5	6	7	8	9	10	11	12	13	14	15
4	4	5	6	7	8	9	10	11	12	13	14	15	16
5	5	6	7	8	9	10	11	12	13	14	15	16	17
6	6	7	8	9	10	11	12	13	14	15	16	17	18
7	7	8	9	10	11	12	13	14	15	16	17	18	19
8	8	9	10	11	12	13	14	15	16	17	18	19	20
9	9	10	11	12	13	14	15	16	17	18	19	20	21
10	10	11	12	13	14	15	16	17	18	19	20	21	22
11	11	12	13	14	15	16	17	18	19	20	21	22	23
12	12	13	14	15	16	17	18	19	20	21	22	23	24

These patterns follow three main rules. Review the rules below and then complete the exercise below:

Rule One. The even numbers on the above table are $2,4,6,8,10$, and 12 . When you add any even number to another even number, your answer will be an even number.
EX:
$2+2=4 \quad 4$ is an even number.
$6+12=18 \quad 18$ is an even number.
Rule Two. The odd numbers on the above table are 1, 3, 5, 7, 9, and 11. When you add any even number to an odd number, your answer will be an odd number.
$E X: 3+4=7 \quad 7$ is an odd number.
Rule Three. When you add any number to itself, your answer will always be an even number.
EX:
$4+4=8 \quad 8$ is an even number.
$5+5=10 \quad 10$ is an even number (Even though 5 is an odd number!)
\qquad

ANSWERS

Based on the three rules above, pay attention to whether the answer is even or odd. Put a check next to the answers that have to be wrong:

1. $4+8=12$ \qquad
2. $6+8=17$ \qquad
3. $42+24=65$ \qquad
$4.16+18=23$

4. $102+86=188$ \qquad
5. $1002+144=1,143$ \qquad
$7.3+8=11$ \qquad
$8.3+12=16$ \qquad
6. $3+42=45$ \qquad
7. $3+34=38$ \qquad
8. $3+110=114$ \qquad
9. $3+3,654=3,657$
10. $6+6=12$ \qquad
11. $66+66=132$ \qquad
12. $666+666=1,331$ \qquad
13. $24+24=48=$ \qquad
14. $22+22=43=$ \qquad
15. $3,432+3,432=6,865$ \qquad

Answer Sheet

\qquad Date

Find the Patterns! Multiplication

Similar to addition facts, multiplication facts follow patterns, too. Observe the multiplication table below.

	1	2	3	4	5	6	7	8	9	10	11	12
1	1	2	3	4	5	6	7	8	9	10	11	12
2	2	4	6	8	10	12	14	16	18	20	22	24
3	3	6	9	12	15	18	21	24	27	30	33	36
4	4	8	12	16	20	24	28	32	36	40	44	48
5	5	10	15	20	25	30	35	40	45	50	55	60
6	6	12	18	24	30	36	42	48	54	60	66	72
7	7	14	21	28	35	42	49	56	63	70	77	84
8	8	16	24	32	40	48	56	64	72	80	88	96
9	9	18	27	36	45	54	63	72	81	90	99	108
10	10	20	30	40	50	60	70	80	90	100	110	120
11	11	22	33	44	55	66	77	88	99	110	121	132
12	12	24	36	48	60	72	84	96	108	120	132	144

Answer Sheet

Name \qquad
\qquad

Review the three multiplication rules and complete the exercise.

Rule One.

When you multiply any number by an even number the product is always even.
$3 \times 4=123$ is an odd number, but 4 is even. Notice that the product, 12 , is even.
$2 \times 6=12 \quad 2,6$, and 12 are all even.

Rule Two.

When you multiply any number by 3 , the digits of the product always add up to a multiple of 3.

The multiples of 3 up to 100 are as follows:
$3,6,9,12,15,18,21,24,27,30,33,36,39,42,45,48,51$,
$54,57,60,63,66,69,72,75,78,81,84,87,90,93,96,99$.

EX:
$3 \times 4=12$.
Add: $1+2=3$.
3 is a multiple of 3 because $3 \times 1=3$
$3 \times 12=36$.
Add: $3+6=9$.
9 is a multiple of 3 because $3 \times 3=9$

Rule Three.

When you multiply any number by 5 , the last digit of the answer has to be either 5 or 0 .

EX:
$5 \times 3=15$ The last digit of the product is 5 .
$5 \times 12=60$, and notice that the last digit of the answer is 0 .

Answer Sheet

Name \qquad

ANSWERS

Based on the three rules above, put a check next to the answers that have to be wrong:

1. $6 \times 8=48$ \qquad
2. $24 \times 14=336$ \qquad
$3.16 \times 28=447$ \qquad
3. $30 \times 32=960$ \qquad
4. $146 \times 86=12,556$ \qquad
5. $152 \times 92=13,985$ \qquad
6. $3 \times 11=33$ \qquad
7. $3 \times 12=35$ \qquad
8. $3 \times 21=63$ \qquad
9. $3 \times 13=38$ \qquad
10. $3 \times 25=75$ \qquad
11. $3 \times 30=91$ \qquad
12. $5 \times 4=20$ \qquad
13. $5 \times 12=72$ \qquad
14. $5 \times 17=85$ \qquad
$16.5 \times 18=88$ \qquad
15. $5 \times 20=100$ \qquad
16. $5 \times 22=106$ \qquad

Answer Sheet

\qquad

ANSWERS
 Multiplying by 10, 100, or 1,000!

Multiplying any number by 10,100, or even 1,000 is easy if you know these tricks.

If you have to multiply any number by 10, just place a 0 at the end of the original number.
$E X: 10 \times 14=140$
If you have to multiply a number by 100, just place two 0s at the end of the original number.
$E X: 100 \times 14=1400$
And if you have to multiply a number by 1,000, just place three 0s at the end of the original number.
$E X: 1000 \times 14=14,000$
Answer the following problems:
$10 \times 24=240$
$1.10 \times 12=120$
2. $10 \times 32=320$
$3.10 \times 87=\underline{870}$
4. $10 \times 376=\underline{3,760}$
$5.10 \times 6,395=\underline{63,950}$

Answer Sheet

\qquad
$100 \times 24=2,400$
6. $100 \times 16=1,600$
7. $100 \times 38=\underline{3,800}$
8. $100 \times 94=\underline{9,400}$
9. $100 \times 672=\underline{67,200}$
$10.100 \times 4,936=\underline{493,600}$
$1,000 \times 24=24,000$
$11.1,000 \times 17=\underline{17,000}$
$12.1,000 \times 39=\underline{39,000}$
$13.1,000 \times 91=\underline{91,000}$
$14.1,000 \times 289=\underline{289,000}$
$15.1,000 \times 3,386=\underline{3,386,000}$
\qquad
\qquad
ANSWERS

Relating Single Digit Addition to a Double Digit.

If you know that $3+5=8$ you can easily solve $30+50$ because you don't have to worry about adding numbers in the ones column.

$$
\begin{array}{r}
30=3 \text { tens } \\
+\quad 50=5 \text { tens } \\
\hline 80=8 \text { tens }
\end{array}
$$

You can use the same rule to add numbers with three digits, or even 4 digits. For example,

$$
\begin{array}{r}
300=3 \text { hundreds } \\
+\quad 500=5 \text { hundreds } \\
\hline 800=8 \text { hundreds }
\end{array}
$$

Just take off the zeros and add the numbers. Then, make sure you put the zeros back! Let's try it with different numbers:

$$
6+5=11
$$

$60+50+110$
$600+500=1,100$

Now, use this rule to add the following numbers. Write the correct answers on the following blanks:

1. $4+8=12$

$$
40+80=120
$$

$$
400+800=1,200
$$

Answer Sheet

\qquad
2. $4+3=7$

$$
40+30=70
$$

3. $4+1=5$

$$
400+300=700
$$

$$
\begin{aligned}
& 40+10=50 \\
& 400+100=500
\end{aligned}
$$

5. $15+18=33$

$$
150+180=330
$$

$1,500+1,800=\underline{3,300}$
6. $14+17=31$

$$
\begin{aligned}
& 140+170=310 \\
& 1,400+1,700=3,100
\end{aligned}
$$

7. $18+36=\underline{54}$

$$
180+360=540
$$

$1,800+3,600=5,400$

Answer Sheet

Name \qquad Date \qquad

ANSWERS Using Estimation: Knowing What's Too Big and Too Small

Adding and subtracting large numbers can sometimes be difficult. Estimating is an easy way to figure out if your answer is close, or if you need to try again.

EX:
$227+631=$ \qquad
This looks hard. But there are some things you can know right awayjust by looking at it.
For example, what if you had an answer like 78?
You should know immediately that it must be wrong.
A 3-digit number + a 3-digit number can never equal a 2-digit number. It's too small!
OR, what if you had an answer like 12,428 ?
You should also know this is wrong.
A 3-digit number + a 3-digit number can never equal a 5-digit number. It's way too big!

If $227+631$ is a difficult problem for you, you can still estimate an answer. You should be able to determine that the answer probably has 3 digits or, at most, 4 digits. (The actual answer is 858 , a large three-digit number.)
Note: The same thing is true for subtraction.
Answer the following multiple choice problems. None of the possible answers are correct, but one is closer to the correct answer than any of the others. Pick the answer provided that is closest to the correct answer.
$1.428+298=$
a. 650
b. 65
c. 6,500
2. $82+45=$
a. 11
b. 1,100
c. 110
3. $634+56=$
a. 6,700
b. 67
c. 670

4. $856-32=$

a. 800
b. 8,000
c. 80
a. 72
b. 720
c. 7,200
\qquad
\qquad

answer Using Rounding Upor Down to Estimatean Answer

$$
\begin{aligned}
& 800+100 \\
& \text { OR } \\
& 372+621 ?
\end{aligned}
$$

You probably chose $800+100$. All you have to do is add $8+1$ and add two zeros. Sometimes when you need a quick answer that doesn't have to be exact, you can estimate by rounding.

Let's take $372+621$ again. How can we turn this into an easy problem with lots of zeros? You can do this by rounding to the nearest hundred.

1. Look at the number in the tens place, the one immediately to the right of the hundreds place.
2. If it is 5 or over, round up to the next hundred by adding 1 to the hundreds place.
3. For 372 , the tens digit is 7 . It's 5 or greater, so we add 1 to 3 and get 4 in the hundreds place. 4_ _.
4. What do we put in the tens and ones place? We put zeros because we have rounded up. 400.
5. Let's do the same with 621 . Because 2 is less than 5 , we round down to the nearest hundred which is 6 .

Now it's time to do the addition
$400+600=1,000$.
This is our estimated answer. What's the exact answer? It's 993, which is pretty close in value.

Answer Sheet

Name \qquad
\qquad

Answer the following multiple choice questions by rounding up or rounding down the numbers in the problem provided. None of the possible answers is correct, but one is closer to the correct answer than any of the others. Pick the approximate answer provided that is closest to the correct answer.

1. $328+598=$
a. 800
b. 80
c. 8,000
2. $52+49=$
a. 10
b. 1,000
c. 100
3. $784+81=$
a. 8,800
b. 88
c. 880
4. $756-39=$
a. 7,000
b. 700
c. 70
5. $4,124-139=$
a. 39
b. 390
c. 3,900

Answer Sheet

\qquad

ANSWERS Mixed Problems Requiring Estimation

None of the possible answers are correct, but one is closer to the correct answer than any of the others. Pick the answer provided that is closest to the correct answer.

1. $327+516=800$
a. 80
b. 800
c. 8,000
2. $689+173=\underline{900}$
a. 900
b. 9,000
c. 90
3. $542+198=700$
a. 7,000
b. 70
c. 700
4. $263+77=380$
a. 38
b. 380
c. 3,800
$5.482+237=\underline{700}$
a. 600
b. 700
c. 800
5. $617-426=\underline{200}$
a. 200
b. 2,000
c. 20
$7.387+187=\underline{600}$
a. 60
b. 6,000
c. 600
$8.871-329=\underline{600}$
a. 60
b. 600
c. 6,000
$9.352-51=300$
a. 300
b. 30
c. 3,000
6. $78+491=580$
a. 5,800
b. 580
c. 58
7. $789+821=\underline{1,600}$
a. 1,600
b. 1,500
c. 1,700
8. $835-263=\underline{500}$
$\begin{array}{ll}\text { a. } 400 & \text { b. } 500\end{array}$
c. 700

Challenge:
$1 \cdot 4,279+2,912=\underline{7,000}$
a. 70,000
b. 7,000
c. 700
2. $3,897+5,267=\underline{8,000}$
a. 8,000
b. 80,000
c. 800
3. $5,933-3,361=\underline{3,000}$
a. 300
b. 3,000
c. 30,000
\qquad
\qquad

Fast Addition Moving Left to Right:The Break Down

One way to add large numbers quickly is to break down the second number into smaller parts and then add all the parts from left to right. For example:
$34+27=$ \qquad is hard to do in your head. So, let's break it down.

27 is the same as $20+7$.
Once you know this, the original problem becomes: $34+20+7=$ \qquad .
Now add this in your head:
$34+20=54$.
Then, $54+7=61$.
You have your answer: $34+27=61$.
Here's another example in 4 steps:
$48+87=$ \qquad

1. Rewrite the second number: $87=80+7$.
2. Write the new problem:
$48+80+7=$ \qquad
3. Add left to right
$48+80=128$. Now add the $7128+7=135$.

135 is the answer!
Write the number that should go where the blank spaces are in the following three-part solutions using the adding left to right method:

1. $31+23=$
a. $23=20+3$
b. $31+20+3=$
c. $31+20=51$. Then, $51+\underline{3}=54$. The answer is 54 .
2. $44+67=$
a. $67=\underline{60}+7$
b. $44+60+7=$
c. $44+60=104$. Then, $104+\underline{7}=111$. The answer is 111 .
3. $27+52=$
a. $52=\underline{50}+\underline{2}$
b. $27+50+2=$
c. $\underline{27}+50=77$. Then, $77+\underline{2}=79$. The answer is 79 .

Answer Sheet

Name \qquad
\qquad answers Fast Addition Moving Left to Right

Fast addition moving left to right is done in three steps. The three steps are as follows:

The problem is $32+23=$ \qquad

* Step One: Rewrite the second number: $23=20+3$
* Step Two: Write the new problem: $32+20+3$ = \qquad
* Step Three: Add left to right: $32+20=52$. Then, $52+3=55$. The answer is 55 .

In answering the problems below, use the three-step format (show your work):

Here's one more example before you do the rest of the problems by yourself. Fill in the blank spaces:
$37+55=$
a. $55=50+$ 5
b. $37+50+5=$
c. $37+50=87$. Then, $87+\quad 5=92$. The answer is 92.

1. $27+54=$ \qquad

$$
\begin{aligned}
54= & 50+4 \\
& 27+50+4= \\
& 27+50=77 . \text { Then, } 77+4=81 . \text { The answer is } 81 .
\end{aligned}
$$

Answer Sheet

Name \qquad
\qquad
2. $41+35=$ \qquad

$$
35=30+5
$$

$$
41+30+5=
$$ $41+30=71$. Then, $71+5=76$. The answer is 76.

$3.18+77=$ \qquad

$$
\begin{aligned}
& 77=70+7 \\
& \quad 18+70+7=
\end{aligned}
$$

$$
18+70=88 . \text { Then, } 88+7=95 . \text { The answer is } 95 .
$$

4. $36+36=$ \qquad

$$
\begin{aligned}
36= & 30+6 \\
& 36+30+6= \\
& 36+30=66 . \text { Then, } 66+6=72 . \text { The answer is } 72 .
\end{aligned}
$$

5. $62+26=$ \qquad

$$
26=20+6
$$

$$
62+20+6=
$$

$62+20=82$. Then, $82+6=88$. The answer is 88 .
6. $51+44=$ \qquad

$$
\begin{aligned}
44= & 40+4 \\
& 51+40+4= \\
& 51+40=91 . \text { Then, } 91+4=95 . \text { The answer is } 95 .
\end{aligned}
$$

Answer Sheet

\qquad
\qquad

$x^{2} 2$ Multiplying by 2 and 5 Using Patterns $x 5$

Everyone should memorize the multiplication tables. Sometimes, though, there are other ways to quickly multiply and divide numbers by recognizing patterns.

For example, to multiply by 2 , you can memorize the multiplication table, or you can recognize that multiplying a number by 2 is just doubling that number. For example:
$2 \times 8=16$. Another way to find out the answer to 2×8 is to recognize that doubling $8(8+8)$ also equals 16 .

This works for bigger numbers, too. $2 \times 136=272$. Another way to find out the answer to 2×136 is to recognize that doubling $136(136+136)$ also equals 272 .

Another example of how recognizing patterns can help you multiply numbers is multiplying by 5 . Any time you multiply a number by 5 , the last digit in the answer must be either 5 or 0 . If the last digit is anything other than a 5 or 0 , it is wrong. For example:

- $5 \times 2=10$: The first digit of this answer is 1 , and the last digit is 0 .
- $5 \times 3=15$: The last digit is 5
- $5 \times 8=40$: The last digit is 0
- $5 \times 18=90$: The last digit is 0
- $5 \times 253=1,265$: The last digit is 5
- 5×12 can't be 72 because the last digit is 2 (The answer is 70)

Answer Sheet

\qquad

Date

Problems: ANSWERS
$2 \times 9=\underline{18}, 2 \times 11=\underline{22}, 2 \times 15=\underline{30}, 2 \times 27=\underline{54}$,
$2 \times 32=\underline{64}, 2 \times 77=\underline{154}, 2 \times 112=\underline{224}, 2 \times 164=\underline{328}$,
$2 \times 234=\underline{468}, 2 \times 367=\underline{734}, 2 \times 426=\underline{852}$.
$5 \times 7=35,5 \times 12=$ \qquad , $5 \times 14=$ \qquad , $5 \times 17=$ \qquad 85 ,
$5 \times 20=\underline{100}, 5 \times 25=$ \qquad .

Put a check by the problems that have to be wrong:
$1.5 \times 16=80$ \qquad
2. $5 \times 19=93$ \qquad
3. $5 \times 78=391$ \qquad
$4.5 \times 92=460$ \qquad
$5.5 \times 156=784$ \qquad
$6.5 \times 333=1665$ \qquad

Answer Sheet

\qquad
\qquad

Everyone should memorize the multiplication tables. Sometimes, though, there are other ways to quickly multiply and divide numbers by recognizing patterns.

To divide by 2 you can memorize the multiplication table, or you can recognize that dividing a number by 2 is just figuring out what half of the number is. For example:

6 divided by $2=3$. Half of 6 is 3 . You know this because $3+3$ is 6 . So, if you know half of 6 is 3 , then you know how to divide by 2 .

This works for bigger numbers too. 860 divided by $2=430$. This means that $430+430=860$ (which also means that 430 is half of 860). And 1,428 divided by $2=714$. This means that $714+714=1,428$ (which also means that 714 is half of 1,428$)$.

To divide by 3 you can memorize the multiplication table, or you can recognize that dividing a number by 3 is just figuring out what one-third of the number is. For example:

6 divided by $3=2$. One-third of 6 is 2 . You know this because $2+2+2$ is 6 . So, if you know one-third of 6 is 2 , then you know how to divide by 3 .

This works for bigger numbers, too. 963 divided by $3=321$. This means that $321+321+321=963$ (which also means that 321 is one-third of 963). And 3,369 divided by $3=1,123$. This means that $1,123+1,123+1,123=3,369$ (which also means that 1,123 is one-third of 3,369).
\qquad
Solve the division problems below using this method, and explain your answer.
Ex: 42 divided by $2=$ \qquad $.21+21=42$. Therefore, half of $42=21$.

1. 40 divided by $2=$ \qquad 20
2. 44 divided by $2=$ \qquad 22
3. 68 divided by $2=$ \qquad 34 .
4. 100 divided by $2=$ \qquad 50 .
5. 146 divided by $2=$ \qquad .

Ex: 42 divided by $3=$ \qquad $.14+14+14=42$. Therefore, one-third of 42 is 14.
6. 9 divided by $3=$ \qquad .
7. 15 divided by $3=$ \qquad .
8. 21 divided by $3=$ \qquad .
9. 33 divided by $3=$ \qquad .
10. 51 divided by $3=$ \qquad 17 .

Answer Sheet

Name \qquad Date \qquad

Multipipying by 3 Using Patterns

Multiplying by 3 is easier than multiplying by other numbers because of a certain pattern. When you multiply any number by 3, the digits of the answer must add up to a multiple of 3. Here are the multiples of 3 up to 100:
$3,6,9,12,15,18,21,24,27,30,33,36,39,42,45,48,51,54,57,60,63,66,69$, $72,75,78,81,84,87,90,93,96,99$.
$3 \times 4=12$. If you add together the two digits of the answer, you get 3 . That is because $1+2=3.3$ is the first number on the list of multiples of 3 above. This is how you know the answer is right! If the answer is not on the list above, it is wrong.
$3 \times 16=48$. Add up the two digits of the answer, $4+8=12$. Since 12 is on the list of multiples of 3 above, the answer is probably right.

Solve the multiplication problems below and check your answer using this method. Show your work.

1. $3 \times 8=$ \qquad
$2.3 \times 11=$ 33
$3.3 \times 14=$ 42
2. $3 \times 19=$ 57
$5.3 \times 20=$ \qquad
$6.3 \times 27=$ \qquad
Answer the question. Then, put a check by the problems that have to be wrong:
Ex: $3 \times 9=26$. Does $2+6=$ a multiple of 3 ? (In other words, is 8 on the list above?) No.
$7.3 \times 13=39$. Does $3+9=$ a multiple of 3 ? Yes
$8.3 \times 15=45$. Does $4+5=$ a multiple of 3 ? Yes
$9.3 \times 21=62$. Does $6+2=$ a multiple of 3 ? No
$10.3 \times 26=78$. Does $7+8=$ a multiple of 3 ? Yes
$11.3 \times 33=97$. Does $9+7=$ a multiple of 3 ? No

Answer Sheet

Name \qquad Date \qquad

\therefore Mixed Problems 2

Review the multiplication and division patterns, then solve the problems below.
Multiplying by 2: Recognize that multiplying a number by 2 is just doubling that number. For example: $2 \times 8=16$. Another way to find out the answer to 2×8 is to recognize that doubling $8(8+8)$ also equals 16 .

Multiplying by 5: Any time you multiply a number by 5, the last digit in the answer must be either 5 or 0 . If the last digit is anything other than a 5 or 0 , it is wrong.

Dividing by 2: Recognize that dividing a number by 2 is just figuring out what half of the number is. For example: 6 divided by $2=3$. Half of 6 is 3 . You know this because $3+3$ is 6 . So, if you know half of 6 is 3 , then you know how to divide by 2 .

Multiplying by 3: Multiplying by 3 is easier than you think because of a certain pattern. When you multiply any number by 3 , the digits of the answer must add up to a multiple of 3 . For example, $3 \times 4=12$. If you add together the two digits of the answer, you get 3 . That is because $1+2=3$.
$2 \times 4=\underline{8}, 2 \times 50=\underline{100}, 2 \times 13=\underline{26}, 2 \times 18=\underline{36}, 2 \times 22=\underline{44}, 2 \times 27=\underline{54}$,
$2 \times 47=\underline{94}, 2 \times 32=\underline{64}, 2 \times 41=\underline{82}, 2 \times 28=\underline{56}, 2 \times 45=\underline{90}, 2 \times 39=\underline{78}$.
$5 \times 7=\underline{3}, 5 \times 11=\underline{55}, 5 \times 12=\underline{60}, 5 \times 14=\underline{\sim}, 5 \times 17=\underline{85}, 5 \times 18=\underline{90}$,
$5 \times 20=\underline{100}, 5 \times 21=\underline{105}, 5 \times 22=\underline{110}, 5 \times 30=\underline{150}, 5 \times 31=\underline{155}, 5 \times 32=\underline{160}$.

6 divided by $2=\ldots \quad 3,12$ divided by $2=\ldots, 14$ divided by $2=\ldots \quad 7$, 20 divided by $2=\ldots \quad 10,22$ divided by $2=\ldots 11,24$ divided by $2=\underline{12}$, 30 divided by $2=\ldots, 40$ divided by $2=\ldots 20,50$ divided by $2=\ldots 25$, 46 divided by $2=$ \qquad 23 _.
$3 \times 4=\underline{12}, 3 \times 11=33,3 \times 12=\underline{36}, 3 \times 13=\underline{39}, 3 \times 20=\underline{60}, 3 \times 21=\underline{63}$,
$3 \times 22=\underline{66}, 3 \times 30=\underline{90}, 3 \times 31=\underline{93}, 3 \times 32=\underline{96}, 3 \times 40=\underline{120}, 3 \times 41=\underline{123}$.

Answer Sheet

Unlike with other numbers, multiplying any single-digit number by 9 results in a recognizable pattern. For example:
$2 \times 9=18 \quad \mathbf{1 + 8}=9$
$3 \times 9=27 \quad 2+7=9$
$4 \times 9=36 \quad 3+6=9$
$5 \times 9=45 \quad 4+5=9$
You should notice that $2 \times 9=18$ and that adding together the two digits of the answer equals 9 . In other words, $1+8=9$.

Fill out the rest of the chart by writing the correct number on the blank spaces.
$6 \times 9=54 \quad \mathbf{5}+\mathbf{4}=9$
$7 \times 9=63 \quad \underline{6}+\underline{3}=9$
$8 \times 9=72 \quad \underline{7}+\underline{2}=9$
$9 \times 9=81 \quad \underline{8}+\underline{1}=9$

Does this pattern work for 9×10 ? Yes or No?
Does it work for 9×11 ? Yes or No?
\qquad
\qquad

ANSWERS
 Multiplying by 6 Using Patterns *6

Unlike with other numbers, multiplying even numbers by 6 results in a recognizable pattern. For example:
$6 \times 2=12$
$6 \times 4=24$
$6 \times 6=36$
$6 \times 8=48$
You should notice that the number that is multiplied by six (the second number in the equations above) is the same as the last digit of the answer. For example, if you multiply 6 by 2 , the last digit of the answer is also 2 . (The answer is 12.) This happens every time you multiply six by an even number. (This doesn't work for odd numbers.)
Write the correct number on the blank spaces.
$1.6 \times 10=60$
2. $6 \times 12=$ \qquad
3. $6 \times 14=$ \qquad
$4.6 \times 16=$ 96

Challenge questions:
$5.6 \times 18=$ \qquad
$6.6 \times 26=\underline{156}$
$7.6 \times 42=$ \qquad
$8.6 \times 74=$ \qquad 444

